MODELING OF POWER GENERATION FOR A SOLAR POWER GENERATOR SYSTEM

Engr. Akinrinade N. A.1, Prof. Onawumi A. S.1, Prof. Ajayeoba A.O. 1, Dr. Sangotayo E.O. 1* Dr. Itabiyi O. E1., Engr. Olojede, M.A.1 and Engr. Sanyaolu O. O.2

MODELING OF POWER GENERATION FOR A SOLAR POWER GENERATOR SYSTEM

Engr. Akinrinade N. A.1, Prof. Onawumi A. S.1, Prof. Ajayeoba A.O. 1, Dr. Sangotayo E.O. 1* Dr. Itabiyi O. E1., Engr. Olojede, M.A.1 and Engr. Sanyaolu O. O.2

1Department of Mechanical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

2Department of Mechanical Engineering, Redeemer’s University, Ede, Nigeria

*Corresponding Author: eosangotayo@lautech.edu.ng

A R T I C L E  I N F O

Article Type: Research

Received: 23, Aug. 2023.

Accepted: 15, Sep. 2023.

Published: 29, Oct. 2023.

 

 

A B S T R A C T

Solar power systems have evolved into a viable source of sustainable energy over the years and one of the key difficulties confronting researchers in the installation and operation of solar power generating systems is how to create a model for household power forecasting.

Multiple regression models were developed from experimental data to estimate rotational and static power as a function of time, current, and voltage, using Minitab 20.4 software.  The model correlations were assessed using statistical metrics, Mean Absolute Bias Error (MABE), and Root Mean Square Error (RMSE).

The results showed that the rotational and static power models were built using the mathematical model as a function of time, current, and voltage, The coefficient of determination, R2 for rotational and static power models were 99.64 % and 99.86 % respectively. MABE and RMSE for rotational model were 1.3030 and 0.7431 and MABE and RMSE for static power model were 1.3548 and 0.79405.

Statistical indicators revealed that regression models accurately predicted rotational and static power as a function of time, current, and voltage. The projected values of rotational and static power demonstrate that these quantities can be utilized to predict and compensate for energy deficit.

Keywords:

Modeling. SAS. Solar, Power, Multiple Regression.

 

References

Abdar, H. M., Chakraverty, A., Moore, D. H., Murray, J. M. and Loparo, K. A. (2012). Design and Implementation of a Specific Grid-tie Inverter for an Agent-based Microgrid. IEEE Energytech, Energytech. https://doi.org/10.1109/EnergyTech.2012.6304676

Adamo F., Attivissimo F., Di Nisio A., Spadavecchia M. (2011) Characterization and testing of a tool for photovoltaic panel modeling IEEE Trans. Instrum. Meas., 60 (5) (2011), pp. 1613-1622, 10.1109/TIM.2011.2105051

Ajayeoba, A.O., Fajobi, M.O., Raheem, W.A., Adebiyi, K.A and Olayinka, M. . (2021). Risk Factor Assessments and Development of Predictive Model for Volatile Organic Compounds Emission in Petrol Stations in Nigeria. Digital Innovation and Contemporary Research in Science, Engineering and Technology, 9 (1):57-74. https://doi.org/: dx.doi.org/10.22624/AIMS/DIGITAL/V9N1P5

Banu I.V., Istrate M. (2012) Modeling and simulation of photovoltaic arrays, Bul. AGIR, 3 (2012), pp. 161-166 http://www.buletinulagir.agir.ro/articol.php?id=1378

Barnston, A., (1992). “Correspondence among the Correlation [root mean square error] and Heidke Verification Measures; Refinement of the Heidke Score.” Notes and Correspondence, Climate Analysis Center

Basher, M. K. and Shorowordi, K. M. (2015). Fabrication of Monocrystalline Silicon Solar Cell using Phosphorous Diffusion Technique. International Journal of Scientific and Research Publications, 5 (3):1-7.

Dambhare, M. V., Butey, B. and Moharil, S. V. (2021). Solar photovoltaic technology: A review of different types of solar cells and its future trends. International Conference on Research Frontiers in Sciences (ICRFS), pp 1-16 doi:10.1088/1742-6596/1913/1/012053.

Deb, G. and Roy, A. B. (2012). Use of Solar Tracking System for Extracting Solar Energy. International Journal of Computer and Electrical Engineering, 4 (1):42-46. https://doi.org/10.7763/ijcee.2012.v4.449

Deepthi, S., Ponni, A., Ranjitha, R. and Dhanabal, R. (2013). Comparison of Efficiencies of Single-Axis Tracking System and Dual-Axis Tracking System with Fixed Mount. International Journal of Engineering Science and Innovative Technology (IJESIT), 2(2):425-430.

Ezugwu, C. N. (2015). Renewable Energy Resources in Nigeria: Sources, Problems and Prospects. Journal of Clean Energy Technologies, 3 (1):68-71. https://doi.org/10.7763/jocet.2015.v3.171

Ferdaus, R. A., Mohammed, M. A., Rahman, S., Salehin, S. and Mannan, M. A. (2014). Energy Efficient Hybrid Dual Axis Solar Tracking System. Journal of Renewable Energy.35 (3):584-591. https://doi.org/doi.org/10.1155/2014/629717

Hossain, N., Routh, T. K., Hamid, A. and Yousuf, B. (2012). Design and Development of a Grid Tied Solar Inverter. IEEE/OSA/IAPR International Conference on Informatics, Electronics and Vision, 5, 1024-1038. https://doi.org/10.1109/ICIEV.2012.6317344

Hysa, A. (2019). Modeling and Simulation of the Photovoltaic Cells for Different Values of Physical and Environmental Parameters. Emerging Science Journal, 3 (6):395-406

Juang, J. and Radharamanan, R. (2014). Design of a Solar Tracking System for Renewable Energy.Proceedings of Zone 1, Conference of the American Society for Engineering Education,

Krismadinata S., Rahim N.A., Ping H.W., Selvaraj J. (2013), Photovoltaic module modeling using Simulink/Matlab Procedia Environ. Sci., 17 (2013), pp. 537-546, 10.1016/j.proenv.2013.02.069

Lee, C. Y., Chou, P. C., Chiang, C. M. and Lin, C. F. (2009). Sun tracking systems: A review. Journal Open Access Sensors, 9 (5):3875-3890. https://doi.org/10.3390/s90503875

Li, H., Zhao, C., Wang, H., Xie, S. and Luo, J. (2014). An Improved PV System Based on Dual Axis Solar Tracking and MPPT. IEEE International Conference on Mechatronics and Automation, 5, 204-209. https://doi.org/10.1109/ICMA.2014.6885696

Mohammedi A., Rekioua D., Mezzai N. (2013), Regular paper experimental study of a PV water pumping system J. Electr. Syst., 9 (2) (2013), pp. 212-222

Mor, C. (2017). New Prototype of Photovoltaic Solar Tracker Based on Arduino. pp 1-13. https://doi.org/10.3390/en10091298

Oji, J. O., Idusuyi, N., Aliu, T. O., Petinrin, M. O., Odejobi, O. A. and Adetunji, A. R. (2012). Utilization of Solar Energy for Power Generation in Nigeria. International Journal of Energy Engineering 2 (2):54-59. https://doi.org/10.5923/j.ijee.20120202.07

Okhaifoh, J. E. and Okene, D. E. (2016). Design and Implementation of a Microcontroller Based Dual Axis Solar Radiation Tracker. Nigerian Journal of Technology (NIJOTECH), Faculty of Engineering, University of Nigeria, Nsukka, 35(3):584-591. https://doi.org/10.4314/njt.v35i3.17

Onawumi, A. S., Akinrinade, N. A., Olojede, M. A and Ajayeoba A. O (2022). Development of a Solar Power Generating System with Auto-Tracking and Data Logging Devices. Journal of Engineering Research and Reports. Vol 23, Issue 12, pp212-222. Article no.JERR 94670, ISSN 2582-9226. DOI:10.9734/JERR/2022/v23i12779

Onawumi, A. S., Okolie S. T. A., Mfon Udo, M. O., Raheem, W.A.  and A. A. O. (2017). Noise Level Investigation and Control of Household Electric Power Generator. Industrial Engineering Letters, 7 (2):63-69.

Patel J., Sharma G. (2013) Modeling and simulation of solar photovoltaic module using Matlab/Simulink Int. J. Res. Eng. Technol., 2 (3) pp. 225-228

Qazi, A., Fayaz,  H., Rahim, Abd. N., Hardeker, G., Alghazzawi, D., Shaban, K.,  and Haruna, K.  (2019). Towards Sustainable Energy: A  Systematic Review of Renewable Energy Sources, Technologies, And Public Opinions. IEEE Access, 7, 63837-63851.

Racharla, S. and Rajan, K. (2018). Solar Tracking System: A review. International Journal of Sustainable Engineering, pp 1-56. https://doi.org/10.1080/19397038.2016.1267816

Rahman S.A., Varma R.K., Vanderheide T. (2014), Generalised model of a photovoltaic panel IET Renew. Power Gener., 8 (3) (2014), pp. 217-229, 10.1049/it-rpg.2013.0094

Ramya, P. and Ananth, R. (2016). The Implementation of Solar Tracker Using Arduino With Servomotor. International Research Journal of Engineering and Technology, 3(8):969-972.

Rekioua D., Matagne E. (2012), Optimization of Photovoltaic Power Systems: Modelization, Simulation and Control Springer Science & Business Media (2012), 10.1007/978-1-4471-2403-0

Rizk, J. and Chaiko, Y. (2008). Solar Tracking System: More Efficient Use of Solar Panels. World Academy of Science, Engineering and Technology. International Journal of Electrical and Computer Engineering,2 (5):784-786

Saga, T. (2010). Crystalline and Polycrystalline Silicon PV Technology. International Journal of Research and Analytical Review, 6 (1):545-549.

Sangotayo E. O., Nnamchi S. N., Mundu M. M.  and Kibogo I. (2023). Modeling of the Operational Parameters on the Performance of an Air Conditioning System. IDOSR Journal of Experimental Sciences 9(2) 135-148. https://doi.org/10.59298/IDOSR/JES/101.1.7011

Yatimi, H., Aroudam, E.H., 2015. A Detailed Study and Modeling of Photovoltaic Module under Real Climatic Conditions. http://dx.doi.org/10.12720/ijeee.3.3.171-176

Yıldıran N., Tacer E. (2016), Identification of photovoltaic cell single diode discrete model parameters based on datasheet values, Sol. Energy, 127 (2016), pp. 175-183, 10.1016/j.solener.2016.01.024