WHEAT GENOTYPES SUSTAIN YIELD BY MAINTAINING BETTER CANOPY TEMPERATURE DEPRESSION, SPAD AND DRY MATTER PARTITIONING POTENTIAL UNDER TERMINAL HEAT STRESS CONDITION

Md. Mehedi Hasan1, 2, M A Baset Mia1, Jalal Uddin Ahmed1, M. Abdul Karim3, A. K. M. Aminul Islam4 and Mohammed Mohi-Ud-Din1

WHEAT GENOTYPES SUSTAIN YIELD BY MAINTAINING BETTER CANOPY TEMPERATURE DEPRESSION, SPAD AND DRY MATTER PARTITIONING POTENTIAL UNDER TERMINAL HEAT STRESS CONDITION

Md. Mehedi Hasan1, 2, M A Baset Mia1, Jalal Uddin Ahmed1, M. Abdul Karim3, A. K. M. Aminul Islam4 and Mohammed Mohi-Ud-Din1

1 Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh

2 Department of Crop Botany & Tea Production Technology, Sylhet Agricultural University, Sylhet 3100, Bangladesh

3 Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh

4 Department of Genetics & Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh

*Corresponding author(s)

Md. Mehedi Hasan, Email: mehedi.cbot@sau.ac.bd

M A Baset Mia, Email: miabaset@bsmrau.edu.bd

A R T I C L E  I N F O

Article Type: Research

Received: 17, Jan. 2024.

Accepted: 23, Jan. 2024.

Published: 27, Jan. 2024.

 

 

A B S T R A C T

Heat stress is one of the bottlenecks for global wheat production. The in-depth investigation of wheat genotypes based on canopy temperature depression, SPAD, and dry matter allocation attributes could assist in understanding the reasons for yield sensitivity under terminal heat stress condition. Four relatively heat-tolerant genotypes, namely AS-10636, BD-594, BD-674, and BARI Gom-33 (BG-33), and two heat-sensitive genotypes (BD-675 and Pavon-76), were grown under two temperature conditions, viz., “control” (optimum sowing on 30th November) and “heat stress” (late sowing on 30th December) to evaluate their yield performance as affected by varied temperatures. During the grain-filling period, late-sown heat-stressed wheat genotypes received about 4.7 oC greater mean air temperature than the control conditions, and a 4% decrease in the grain yield was recorded for every 1 oC rise in temperature. Heat stress significantly reduced the number of days required for heading and anthesis compared to the control. The upper exposed peduncle length increased under late-sown heat-stressed conditions, with a greater significant impact on the susceptible BD-675 genotype. Canopy temperature depression (CTD) was reduced to about 65% in susceptible genotypes and 40% in tolerant genotypes under heat stress, implying the tolerant genotypes could keep their leaves cooler than susceptible ones under high temperatures. The SPAD value was also severely decreased in the susceptible genotype Pavon-76 compared to the tolerant ones under heat stress. While dry matter distribution in the culm, flag leaf, husk, and grain decreased under heat stress conditions compared to the control, the tolerant genotypes maintained higher grain dry weight by prioritizing dry matter allocation to the grain, principally by reducing it in the culm. Our results concluded that genotypes that can tolerate terminal heat stress by maintaining better CTD, SPAD, and dry matter partitioning potential to grain, along with a relatively greater grain filling duration, can sustain a higher grain yield under heat stress conditions. Moreover, the proper dissection of underlying biochemical and molecular mechanisms associated with yield sustainability in tolerant genotypes is encouraged before adopting them for upcoming breeding programs.

Keywords:

Culm dry weight, heat stress, peduncle length, repeated measures ANOVA, Triticum aestivum.

REFERENCES

  1. Akter, N., & Islam, M. R. (2017). Heat stress effects and management in wheat. A review. Agronomy for Sustainable Development, 37(5), 37. https://doi.org/10.1007/s13593-017-0443-9
  2. Arshad, M. S., Farooq, M., Asch, F., Krishna, J. S. V., Prasad, P. V. V., & Siddique, K. H. M. (2017). Thermal stress impacts reproductive development and grain yield in rice. Plant Physiology and Biochemistry, 115, 57–72. https://doi.org/10.1016/j.plaphy.2017.03.011
  3. Balla, K., Karsai, I., Bónis, P., Kiss, T., Berki, Z., Horváth, Á., Mayer, M., Bencze, S., & Veisz, O. (2019). Heat stress responses in a large set of winter wheat cultivars (Triticum aestivum L.) depend on the timing and duration of stress. PLOS ONE, 14(9), e0222639. https://doi.org/10.1371/journal.pone.0222639
  4. Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
  5. Chileshe, P., Chikuta, S., Lungu, D., Kamfwa, K., & Omondi, J. O. (2023). Evaluation of wheat genotypes for heat stress tolerance and identification of early stress indicators. Plant Physiology Reports, 28(3), 405–417. https://doi.org/10.1007/s40502-023-00735-7
  6. Deva, C. R., Urban, M. O., Challinor, A. J., Falloon, P., & Svitákova, L. (2020). Enhanced Leaf Cooling Is a Pathway to Heat Tolerance in Common Bean. Frontiers in Plant Science, 11(February), 1–17. https://doi.org/10.3389/fpls.2020.00019
  7. Djanaguiraman, M., Narayanan, S., Erdayani, E., & Prasad, P. V. V. (2020). Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biology, 20(1), 268. https://doi.org/10.1186/s12870-020-02479-0
  8. Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D., & Huang, J. (2017). Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science, 8(June), 1–16. https://doi.org/10.3389/fpls.2017.01147
  9. Farhad, M., Kumar, U., Tomar, V., Bhati, P. K., Krishnan J., N., Kishowar-E-Mustarin, Barek, V., Brestic, M., & Hossain, A. (2023). Heat stress in wheat: a global challenge to feed billions in the current era of the changing climate. Frontiers in Sustainable Food Systems, 7(July), 1–24. https://doi.org/10.3389/fsufs.2023.1203721
  10. Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. M. (2011). Heat stress in wheat during reproductive and grain-filling phases. In Critical Reviews in Plant Sciences (Vol. 30, Issue 6, pp. 491–507). https://doi.org/10.1080/07352689.2011.615687
  11. Farooq, M., Cheema, A. A., Ishaaq, I., & J, Z. (2018). Correlation and genetic component studies for peduncle length affecting grain yield in wheat. International Journal of Advanced and Applied Sciences, 5(10), 67–75. https://doi.org/10.21833/ijaas.2018.10.010
  12. Gare, S., Wagh, R. S., Ingle, A. U., & Soni, N. (2018). Effect of temperature on stem reserve mobilization for grain development in wheat. Journal of Pharmacognosy and Phytochemistry, 7(5), 1119–1123.
  13. Ge, Y., Hawkesford, M. J., Rosolem, C. A., Mooney, S. J., Ashton, R. W., Evans, J., & Whalley, W. R. (2019). Multiple abiotic stress, nitrate availability and the growth of wheat. Soil and Tillage Research, 191(November 2018), 171–184. https://doi.org/10.1016/j.still.2019.04.005
  14. Gray, S. B., & Brady, S. M. (2016). Plant developmental responses to climate change. Developmental Biology, 419(1), 64–77. https://doi.org/10.1016/j.ydbio.2016.07.023
  15. Hatfield, J. L., & Dold, C. (2018). Agroclimatology and Wheat Production: Coping with Climate Change. Frontiers in Plant Science, 9(February), 1–5. https://doi.org/10.3389/fpls.2018.00224
  16. Hoffmann, A. A., Camac, J. S., Williams, R. J., Papst, W., Jarrad, F. C., & Wahren, C. (2010). Phenological changes in six Australian subalpine plants in response to experimental warming and year‐to‐year variation. Journal of Ecology, 98(4), 927–937. https://doi.org/10.1111/j.1365-2745.2010.01667.x
  17. Hossain, A., Kizilgeci, F., Milon, M. S. H., Silva, J. A. T., & Gaydon, D. S. (2021). Evaluation of six elite irrigated spring bread wheat (Triticum aestivum L .) varieties tolerant to heat stress during late sowing. Thai Journal of Agricultural Science, 54(June), 22–46.
  18. IPCC. (2014). Summary for policymakers. In: Climate Change 2014: Impacts,Adaptation, and Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assess. Cambridge University Press, UK and New York, 1–32.
  19. Kazan, K., & Lyons, R. (2016). The link between flowering time and stress tolerance. Journal of Experimental Botany, 67(1), 47–60. https://doi.org/10.1093/jxb/erv441
  20. Khadka, K., Earl, H. J., Raizada, M. N., & Navabi, A. (2020). A Physio-Morphological Trait-Based Approach for Breeding Drought Tolerant Wheat. Frontiers in Plant Science, 11(June), 1–26. https://doi.org/10.3389/fpls.2020.00715
  21. Khatun, S., Ahmed, J. U., Mollah, M. M. I., & Taewan, K. (2018). Physiological Mechanism of Thermotolerance in Wheat (<i>Triticum aestivum</i> Lin.) Seedlings. American Journal of Plant Sciences, 09(13), 2719–2727. https://doi.org/10.4236/ajps.2018.913198
  22. Konrad, W., Katul, G., & Roth‐Nebelsick, A. (2021). Leaf temperature and its dependence on atmospheric CO 2 and leaf size. Geological Journal, 56(2), 866–885. https://doi.org/10.1002/gj.3757
  23. Lal, M. K., Tiwari, R. K., Gahlaut, V., Mangal, V., Kumar, A., Singh, M. P., Paul, V., Kumar, S., Singh, B., & Zinta, G. (2022). Physiological and molecular insights on wheat responses to heat stress. Plant Cell Reports, 41(3), 501–518. https://doi.org/10.1007/s00299-021-02784-4
  24. Li, M., Feng, J., Zhou, H., Najeeb, U., Li, J., Song, Y., & Zhu, Y. (2022). Overcoming Reproductive Compromise Under Heat Stress in Wheat: Physiological and Genetic Regulation, and Breeding Strategy. Frontiers in Plant Science, 13(May). https://doi.org/10.3389/fpls.2022.881813
  25. Mamrutha, H. M., Rinki, K., Venkatesh, K., Gopalareddy, K., Khan, H., Mishra, C. N., Kumar, S., Kumar, Y., Singh, G., & Singh, G. P. (2020). Impact of high night temperature stress on different growth stages of wheat. Plant Physiology Reports, 25(4), 707–715. https://doi.org/10.1007/s40502-020-00558-w
  26. Mohanta, T. K., Bashir, T., Hashem, A., & Abd_Allah, E. F. (2017). Systems biology approach in plant abiotic stresses. Plant Physiology and Biochemistry, 121(October), 58–73. https://doi.org/10.1016/j.plaphy.2017.10.019
  27. Mohi-Ud-Din, M., Rohman, M. M., Alam, M. A., Hasanuzzaman, M., & Islam, T. (2023). Wheat variety carrying 2NvS chromosomal segment provides yield advantage through lowering terminal heat–induced oxidative stress. Protoplasma, 260(1), 63–76. https://doi.org/10.1007/s00709-022-01759-w
  28. Mohi-Ud-Din, M., Talukder, D., Rohman, M., Ahmed, J. U., Jagadish, S. V. K., Islam, T., & Hasanuzzaman, M. (2021). Exogenous Application of Methyl Jasmonate and Salicylic Acid Mitigates Drought-Induced Oxidative Damages in French Bean (Phaseolus vulgaris L.). Plants, 10(10), 2066. https://doi.org/10.3390/plants10102066
  29. Mohi‐ud‐din, M., Siddiqui, M. N., Rohman, M. M., Jagadish, S. V. K., Ahmed, J. U., Hassan, M. M., Hossain, A., & Islam, T. (2021). Physiological and biochemical dissection reveals a trade‐off between antioxidant capacity and heat tolerance in bread wheat (Triticum aestivum l.). Antioxidants, 10(3), 1–26. https://doi.org/10.3390/antiox10030351
  30. Mottaleb, K. A., Govindan, V., Singh, P. K., Sonder, K., He, X., Singh, R. P., Joshi, A. K., Barma, N. C. D., Kruseman, G., & Erenstein, O. (2019). Economic benefits of blast-resistant biofortified wheat in Bangladesh: The case of BARI Gom 33. Crop Protection, 123(July 2018), 45–58. https://doi.org/10.1016/j.cropro.2019.05.013
  31. Paul, S., & Duhan, J. S. (2021). Upper exposed peduncle length variation studies in wheat cultivars in response to heat stress at varied sowing times. In Plant Archives (Vol. 21, Issue Suppliment-1, pp. 2016–2019). https://doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.328
  32. Puigvert, M., Solé, M., López‐Garcia, B., Coll, N. S., Beattie, K. D., Davis, R. A., Elofsson, M., & Valls, M. (2019). Type III secretion inhibitors for the management of bacterial plant diseases. Molecular Plant Pathology, 20(1), 20–32. https://doi.org/10.1111/mpp.12736
  33. Reynolds-Henne, C. E., Langenegger, A., Mani, J., Schenk, N., Zumsteg, A., & Feller, U. (2010). Interactions between temperature, drought and stomatal opening in legumes. Environmental and Experimental Botany, 68(1), 37–43. https://doi.org/10.1016/j.envexpbot.2009.11.002
  34. Riaz, M. W., Yang, L., Yousaf, M. I., Sami, A., Mei, X. D., Shah, L., Rehman, S., Xue, L., Si, H., & Ma, C. (2021). Effects of Heat Stress on Growth, Physiology of Plants, Yield and Grain Quality of Different Spring Wheat (Triticum aestivum L.) Genotypes. Sustainability, 13(5), 2972. https://doi.org/10.3390/su13052972
  35. Sarkar, S., Islam, A. K. M. A., Barma, N. C. D., & Ahmed, J. U. (2021). Tolerance mechanisms for breeding wheat against heat stress: A review. South African Journal of Botany, 138, 262–277. https://doi.org/10.1016/j.sajb.2021.01.003
  36. Shah, S. H., Houborg, R., & McCabe, M. F. (2017). Response of Chlorophyll, Carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy, 7(3), 1–20. https://doi.org/10.3390/agronomy7030061
  37. Shirdelmoghanloo, H., Cozzolino, D., Lohraseb, I., & Collins, N. C. (2016). Truncation of grain filling in wheat (Triticum aestivum) triggered by brief heat stress during early grain filling: association with senescence responses and reductions in stem reserves. Functional Plant Biology, 43(10), 919. https://doi.org/10.1071/FP15384
  38. Sofi, P. A., Ara, A., Gull, M., & Rehman, K. (2020). Canopy Temperature Depression as an Effective Physiological Trait for Drought Screening. In Drought – Detection and Solutions (pp. 1–16). IntechOpen. https://doi.org/10.5772/intechopen.85966
  39. Tomás, D., Rodrigues, J. C., Viegas, W., & Silva, M. (2020). Assessment of High Temperature Effects on Grain Yield and Composition in Bread Wheat Commercial Varieties. Agronomy, 10(4), 499. https://doi.org/10.3390/agronomy10040499
  40. Tricker, P. J., ElHabti, A., Schmidt, J., & Fleury, D. (2018). The physiological and genetic basis of combined drought and heat tolerance in wheat. Journal of Experimental Botany, 69(13), 3195–3210. https://doi.org/10.1093/jxb/ery081
  41. Yang, D., Li, Y., Shi, Y., Cui, Z., Luo, Y., Zheng, M., Chen, J., Li, Y., Yin, Y., & Wang, Z. (2016). Exogenous Cytokinins Increase Grain Yield of Winter Wheat Cultivars by Improving Stay-Green Characteristics under Heat Stress. PLOS ONE, 11(5), e0155437. https://doi.org/10.1371/journal.pone.0155437
  42. Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.