Biochar-Assisted Amelioration of Saline Soil for Optimal Growth and Yield of Okra (Abelmoschus esculentus (L.) Moench)

Biswajit Das, Md Jahid Hasan Jone, Kazi Md Younus Tanim, Humayun Kabir, Nadia Islam, Tarikul Islam, Akhinur Shila and Rayhan Ahmed*

Biochar-Assisted Amelioration of Saline Soil for Optimal Growth and Yield of Okra (Abelmoschus esculentus (L.) Moench)

Biswajit Das1,2, Md Jahid Hasan Jone2, Kazi Md Younus Tanim1, Humayun Kabir1, Nadia Islam1,3, Tarikul Islam1, Akhinur Shila4 and Rayhan Ahmed1*

1Department of Agriculture, Noakhali Science and Technology University, Noakhali

2Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh

3Department of Agronomy, Bangladesh Agricultural University, Mymensingh                  4Department of Agricultural Botany, Patuakhali Science and Technology University, Dumki, Patuakhali

Corresponding author:

Rayhan Ahmed

Assistant Professor,

Department of Agriculture, Noakhali Science and Technology University, Noakhali

Email: rayhan.rimon@gmail.com

ORCiD: (0000-0003-2820-7890)

 

A R T I C L E  I N F O

Article Type: Research

Received: 05, Jun. 2024.

Accepted: 12, Jun. 2024.

Published: 25, Jun. 2024.

 

 

A B S T R A C T

Saline soil poses a significant challenge to agricultural productivity, particularly in coastal regions. In this study, a field experiment at the agriculture research field of Noakhali Science and Technology University, Noakhali was conducted where three doses of biochar were applied using RCBD with 3 replications in the soil to investigate the potential of biochar as a sustainable solution to enhance Okra growth and yield under saline conditions. To impose the salinity, 0.1M of NaCl solution were applied in each plot at the seedling stage. The findings demonstrated that the application of biochar significantly improves the growth and yield-contributing factors of okra. As the biochar dosage increased, notable increases in plant height, number of leaves per plant, lamina length, and petiole length were observed. Additionally, biochar-treated plants exhibited reduced time to first flowering (DAS), indicating enhanced early reproductive development. Chlorophyll content in okra leaves also showed a positive correlation with biochar application, suggesting improved photosynthetic efficiency and stress tolerance in saline conditions. Notably, biochar application positively influenced okra fruit characteristics. Higher biochar doses significantly increased the single fruit’s length, diameter, and weight. Moreover, the number of fruits per plant and overall yield per plot were notably higher in biochar-treated plants. Among the various biochar doses tested, the 4 tons/ha treatment proved the most effective, resulting in remarkable improvements in all growth and yield parameters. The findings indicate that using biochar might help the farmers of the coastal region to mitigate the salinity problem.

Keywords:

Biochar, Okra, Saline soil, Growth, Yield.

REFERENCES

  1. Abbas, T., Pervez, M. A., Ayyub, C. M., Shaheen, M. R., Tahseen, S., Shahid, M. A., Bilal, R. M., & Manan, A. (2014). Evaluation of different okra genotypes for salt tolerance. College of Agriculture, University of Sargodha, Sargodha, Pakistan. International Journal of Plant, Animal and Environmental Sciences, 4(3), 23-30.
  2. Acharya, N., Vista, S. P., Shrestha, S., Neupane, N., & Pandit, N. R. (2022). Potential of Biochar-Based Organic Fertilizers on Increasing Soil Fertility, Available Nutrients, and Okra Productivity in Slightly Acidic Sandy Loam Soil. Nitrogen, 4(1), 1-15. https://doi.org/10.3390/nitrogen4010001
  3. Adeyemi, O. R., Bashiruddin, A. A., Adigun, J. A., Adejuyigbe, C. O., & Osunleti, S. O. (2022).     Fruit quality and marketability of Okra (Abelmoschus esculentus (L.) Moench) as influenced by biochar rates and weeding regime. International Journal of Pest Management, 1-9. https://doi.org/10.1080/09670874.2022.2094493
  4. Ali, S., Rizwan, M., Qayyum, M. F., Ok Y. S., Ibrahim, M., Riaz, M., Shahzad, & A. N. (2017). Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environmental Science and Pollution Research, 24, 12700-12712. https://doi.org/10.1007/s11356-017-8904-x
  5. Arapitsas, P. (2008). Identification and quantification of polyphenolic compounds from okra seeds and skins. Food Chemistry, 110(4). 1041-1045. https://doi.org/10.1016/j.foodchem.2008.03.014
  6. Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil, 337, 1-18. https://doi.org/10.1007/s11104-010-0464-5
  7. Costa, J. P. B., Oliveira, F. A., Santos, S. T. D., Oliveira, M. K., Marques, I. C., Cordeiro, C. J. X., & Góis, H. M. M. N. (2022). Okra salt stress reduction under potassium fertigation. Horticultura Brasileira, 40(4), 360-366. https://doi.org/10.1590/s0102-0536-20220402
  8. Cramer, G. R. (2003). Differential effects of salinity on leaf elongation kinetics of three grass species. Plant Soil 253(1), 233–244. https://doi.org/10.1023/A:1024527401033
  9. Dar, A. A., Mohd, Y. R., Javid, M., Waseem, Y., Khursheed, A. W., & Dheeraj, V. (2019). Biochar: Preparation, properties and applications in sustainable agriculture. International Journal of Theoretical & Applied Sciences, 11(2), 29-40.
  10. DeLuca, T. H., Gundale, M. J., MacKenzie, M. D., & Jones, D. L. (2015). Biochar effects on soil nutrient transformations. In Biochar for environmental management, Routledge, 421-454.
  11. Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., & Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36, 1-18. https://doi.org/10.1007/s13593-016-0372-z
  12. dos Santos Farias, D. B., de Freitas, M. I., Lucas, A. A. T., & Gonzaga, M. I. S. (2020). Biochar and Its Impact on Soil Properties and on The Growth of Okra Plants. In Colloquium Agrariae, 16(2), 29-39.
  13. Drake, J. A., Cavagnaro, T. R., Cunningham, S. C., Jackson, W. R., & Patti, A. F. (2016). Does biochar improve establishment of tree seedlings in saline sodic soils? Land Degradation & Development, 27(1), 52-59. https://doi.org/10.1002/ldr.2374
  14. Elshaikh, N. A., Zhipeng, L., Dongli, S., & Timm, L. C. (2018). Increasing the okra salt threshold value with biochar amendments. Journal of Plant Interactions, 13(1), 51-63. https://doi.org/10.1080/17429145.2017.1418914
  15. Fahad, S., Hussain, S., Saud, S., Hassan, S., Tanveer, M., Ihsan, M. Z., & Huang, J. (2016). A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiology and Biochemistry, 103, 191-198. https://doi.org/10.1016/j.plaphy.2016.03.001
  16. Gairhe, J. J., Bhattarai, P., Gyanwali, P., Khanal, R., Mainali, R., Poudel, S., & Sharma, P. K. (2024). Effect of various biochar on selected soil properties and agronomical parameters of okra (Abelmoschus esculentus L.) at Rupandehi, Nepal. Archives of Agriculture and Environmental Science, 9(1), 134-142. https://doi.org/10.26832/24566632.2024.0901019
  17. Gopalan, C., Ramasastri, B. V., Balasubramanian, S. C., Narsinagarao, B. S., Deosthale, Y. G., & Pant, K. C. (2007). Nutritive Value of Indian Foods. India National Institute of Nutrition, Hyderabad.
  18. Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014. https://doi.org/10.1155/2014/701596
  19. Haq, I. U., Azam, N., Ashraf, M., Javaid, M. M., Murtaza, G., Ahmed, Z., & Arslan, M. (2023). Improving the genetic potential of okra (Abelmoschus esculentus L.) germplasm to tolerate salinity stress. Scientific Reports, 13(1), 21504. https://doi.org/10.1038/s41598-023-48370-4
  20. Haque, M. S. S., Rahman, F., Naimuzzaman, M., Jannat, F., & Mahmud, M. (2024). Responses of Nitrobenzene on Growth and Yield Attributes in Okra to Salinity Stress. Journal of Agricultural Sciences and Engineering, 6(1), 49-59.
  21. Hashan, M. N., Mahmud, R., Sizan, M. J. M., Md, K., Tanim, Y., Das, B., … & Hoshain, S. (2023). Agriculture, Livestock and Fisheries, 10(2), 99-107.
  22. Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2, 379-420.
  23. Huang, J., Zhu, C., Kong, Y., Cao, X., Zhu, L., Zhang, Y., Ning, Y., Tian, W., Zhang, H., Yu, Y., & Zhang, J. (2022). Biochar application alleviated rice salt stress via modifying soil properties and regulating soil bacterial abundance and community structure. Agronomy, 12(2), 409. https://doi.org/10.3390/agronomy12020409
  24. Huang, M., Zhang, Z., Zhu, C., Zhai, Y., & Lu, P. (2019). Effect of biochar on sweet corn and soil salinity under conjunctive irrigation with brackish water in coastal saline soil. Scientia horticulturae, 250, 405-413. https://doi.org/10.1016/j.scienta.2019.02.077.
  25. Hui, D. (2021). Effects of biochar application on soil properties, plant biomass production, and soil greenhouse gas emissions: A mini-review. Agricultural Sciences, 12(03).
  26. Ibrahim, M. E. H., Ali, A. Y. A., Elsiddig, A. M. I., Zhou, G., Nimir, N. E. A., Agbna, G. H., & Zhu, G. (2021). Mitigation effect of biochar on sorghum seedling growth under salinity stress. Pakistan Journal of Botany, 53(2), 387-392. http://dx.doi.org/10.30848/PJB2021-2(21)
  27. Jabborova, D., Abdrakhmanov, T., Jabbarov, Z., Abdullaev, S., Azimov, A., Mohamed, I., & Elkelish, A. (2023). Biochar improves the growth and physiological traits of alfalfa, amaranth and maize grown under salt stress. PeerJ, 11, e15684. https://doi.org/10.7717/peerj.15684
  28. Khan, M. S., Ali, S., Ali, N., Khan, S. A., Akbar, R., Ansari, M. J., & Adnan, M. (2023). Response of okra (Abelmoschus esculentus L.) F5: 6 population of for earliness and yield traits. Pakistan Journal of Botany, 55(2), 689-695. http://dx.doi.org/10.30848/PJB2023-2(26)
  29. Khandaker, M. M., Jusoh, N., Hafiza, N. A. A. R., & Ismail, S. Z. (2017). The effect of different types of organic fertilizers on growth and yield of Abelmoschus esculentus L. Moench (okra). Bulgarian Journal of Agricultural Science, 23(1), 119-125.
  30. Khatun, M., Hossain, M., & Joardar, J. C. (2024). Biochar as a potential soil conditioner in saline prone coastal area of Bangladesh. Khulna University Studies, 1-10. https://doi.org/10.53808/KUS.SI.2023.ISFMRT.1099-ls
  31. Lehmann J., Joseph S. (2009). Introduction. Biochar for Environmental Management, 450.
  32. Lehmann, J. (2007). A handful of carbon. Nature, 447(7141), 143-144.
  33. Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil Biology and Biochemistry, 43(9), 1812-1836. https://doi.org/10.1016/j.soilbio.2011.04.022
  34. Li, S., & Tasnady, D. (2023). Biochar for soil carbon sequestration: Current knowledge, mechanisms, and future perspectives. Journal of Carbon Research, 9(3), 67. https://doi.org/10.3390/c9030067
  35. Mohammed, J., Mohammed, W., & Shiferaw, E. (2020). Correlation and path coefficient analysis among agro-morphological and biochemical traits of okra [Abelmoschus esculentus (L.) Moench] genotypes in Ethiopia. Acta agriculturae Slovenica, 115(2), 329-339.
  36. Mukherjee, A., & Lal, R. (2013). Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy, 3(2), 313-339. https://doi.org/10.3390/agronomy3020313
  37. Munns, R. (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environment, 16(1), 15-24. https://doi.org/10.1111/j.1365-3040.1993.tb00840.x
  38. Noman, A., Ali, S., Naheed, F., Ali, Q., Farid, M., Rizwan, M., & Irshad, M. K. (2015). Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Archives of Agronomy and Soil Science, 61(12), 1659-1672. https://doi.org/10.1080/03650340.2015.1028379
  39. Riaz, M., Khan, M., Ali, S., Khan, M. D., Ahmad, R., Khan, M. J., & Rizwan, M. (2018). Sugarcane waste straw biochar and its effects on calcareous soil and agronomic traits of okra. Arabian Journal of Geosciences, 11, 1-7. https://doi.org/10.1007/s12517-018-4113-2
  40. Schulz, H., Glaser, B. (2012). Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. Journal of Plant Nutrition and Soil Science, 175(3), 410-422. https://doi.org/10.1002/jpln.201100143
  41. Shahid, M. A., Pervez, M. A., Balal, R. M., Ahmad, R., Ayyub, C. M., Abbas, T., & Akhtar, N. (2011). Salt stress effects on some morphological and physiological characteristics of okra (Abelmoschus esculentus L.) Salt stress effects on some morphological and physiological. Soil and Environment, 30(1), 66-73.
  42. Siddiqui, M. H., Al-Khaishany, M. Y., Al-Qutami, M. A., Al-Whaibi, M. H., Grover, A., Ali, H. M., & Bukhari, N. A. (2015). Response of different genotypes of faba bean plant to drought stress. International Journal of Molecular Sciences, 16(5), 10214-10227. https://doi.org/10.3390/ijms160510214
  43. Siemonsma, J. S. (1982). The cultivation of okra (Abelmoschus spp.), tropical fruit-vegetable (with special reference to the Ivory Coast). D.H.O, thesis Wageningen Agricultural Wageningen, the Netherland, 297.
  44. Sigua, G. C., Novak, J. M., Watts, D. W., Johnson, M. G., & Spokas, K. (2015). Efficacies of designer biochars in improving biomass and nutrient uptake of winter wheat grown in a hard setting subsoil layer. Chemosphere, 142, 176-183. https://doi.org/10.1016/j.chemosphere.2015.06.015
  45. Singh, H., Northup, B. K., Rice, C. W., & Prasad, P. V. (2022). Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar, 4(1), 8. https://doi.org/10.1007/ s42773-022-00138-1 55(2),
  46. Tejada, M., Garcia, C., Gonzalez, J. L., & Hernandez, M. T. (2006). Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biology and Biochemistry, 38(6), 1413-1421. https://doi.org/10.1016/j.soilbio.2005.10.017
  47. Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of botany, 91(5), 503-527. https://doi.org/10.1093/aob/mcg058
  48. Tindall, H. D. (1983). Vegetables in the Tropics. Macmillan Press Ltd. ISBN: 9780333242667
  49. Uwiringiyimana, T., Habimana, S., Umuhozariho, M. G., Bigirimana, V. P., Uwamahoro, F., Ndereyimana, A., & Naramabuye, F. X. (2024). Review on Okra (Abelmoschus esculentus (L.) Moench) Production, Nutrition and Health Benefits. Rwanda Journal of Agricultural Sciences, 3(1), 71-87.
  50. Wang, L., Butterfly, C. R., Wang, Y., Herath, H., Xi, Y. G., & Xiao, X. J. (2014). Effect of crop residue biochar on soil acidity amelioration in strongly acidic tea garden soils. Soil Use Management, 30(1), 119-128. https://doi.org/10.1111/sum.12096
  51. William, K., & Qureshi, R. A. (2015). Evaluation of biochar as fertilizer for the growth of some seasonal vegetables. Journal of Bioresource Management, 2(1), 1. https://doi.org/ 10.35691/JBM.5102.0011.