CAMPYLOBACTERIOSIS IN THE SPOTLIGHT: INSIGHTS FROM SOUTHEAST ASIA

Uditi Paul Bristi1, Mahmudul Hasan1, Swagato Dutta1, Noimul Hasan Siddiquee1, Sultana Rajia, S. M. Lutfor Rahman Remon1, Susen Chandra Sharma1, Nikkon Sarker1

CAMPYLOBACTERIOSIS IN THE SPOTLIGHT: INSIGHTS FROM SOUTHEAST ASIA

Uditi Paul Bristi1, Mahmudul Hasan1, Swagato Dutta1, Noimul Hasan Siddiquee1, Sultana Rajia, S. M. Lutfor Rahman Remon1, Susen Chandra Sharma1, Nikkon Sarker1*

1 Department of Microbiology, Noakhali Science and Technology University

Corresponding Author:

Nikkon Sarker

Lecturer

Department of Microbiology

Noakhali Science and Technology University, Noakhali, Bangladesh

Mobile: +8801761422867

E-mail: nikkon@nstu.edu.bd

A R T I C L E  I N F O

Article Type: Research

Received: 15, Apr. 2024.

Accepted: 28, Apr. 2024.

Published: 8, May. 2024.

 

KEYWORDS:

Campylobacter infections, antibiotic resistance, epidemiology of outbreaks, transmission, prevention and treatment.

A B S T R A C T

Campylobacter has recently emerged as a significant contributor to bacterial foodborne and waterborne diarrheal infections, posing significant public health threats globally, including in both low-income countries and developed nations such as Europe and the USA. This pathogen is a primary cause of gastrointestinal infections, significantly elevating the burden of Campylobacter-related illnesses worldwide. As a commensal microorganism in the gastrointestinal tracts of numerous wild and livestock animals, as well as avian species, Campylobacter typically spreads via the fecal-oral route through the consumption of contaminated food and water, leading to zoonotic infections. The prevalence of Campylobacter infections, primarily attributed to C. jejuni and C. coli, has seen a notable increase, alongside the emergence of new Campylobacter species documented globally. Beyond gastrointestinal inflammation, it is associated with extra-intestinal disorders such as septicemia, meningitis, reactive arthritis, and Guillain-Barré Syndrome. In Southeast Asian countries, Campylobacter infections are commonly linked with traveler’s diarrhea. Moreover, the rising antimicrobial resistance among Campylobacter species poses a significant public health challenge, compromising the efficacy of treatment measures. Our study aims to provide a comprehensive overview of Campylobacter infections, with a specific focus on Asian countries in the Southeast region, which necessitates effective remedial strategies and ensuring food safety. This review addresses Campylobacter pathogenic species, isolation and diagnosis, reservoirs, transmission pathways, epidemiology of outbreaks, prevention and treatment options, antibiotic resistance, and the control of antibiotic usage. This study will facilitate further research into Campylobacter infections globally and support preventive initiatives, including health surveillance, rapid diagnostic services, identification of causative agents, vaccination of reservoir animals, and maintenance of proper food hygiene practices.

REFERENCES

  1. (7) Occurrence of Campylobacter in dairy and beef cattle and their farm environment in Malaysia | Request PDF. (n.d.).
  2. (PDF) Campylobacter in raw (unpasteurised) milk risk profile. (n.d.).
  3. Acke, E. (2018). Campylobacteriosis in dogs and cats: a review. New Zealand Veterinary Journal, 66(5), 221–228. https://doi.org/10.1080/00480169.2018.1475268
  4. Adhav, V. A., & Saikrishnan, K. (2023). The Realm of UnconventionalNoncovalent Interactionsin Proteins: Their Significance in Structure and Function. ACS Omega, 8(25), 22268. https://doi.org/10.1021/ACSOMEGA.3C00205
  5. Antibiotic Resistance | Campylobacter | CDC. (n.d.).
  6. Asakura, M., Samosornsuk, W., Hinenoya, A., Misawa, N., Nishimura, K., Matsuhisa, A., & Yamasaki, S. (2008). Development of a cytolethal distending toxin (cdt) gene-based species-specific multiplex PCR assay for the detection and identification of Campylobacter jejuni, Campylobacter coli and Campylobacter fetus. FEMS Immunology and Medical Microbiology, 52(2), 260–266. https://doi.org/10.1111/J.1574-695X.2007.00369.X
  7. Bassal, R., Lerner, L., Valinsky, L., Agmon, V., Peled, N., Block, C., Keller, N., Keness, Y., Taran, D., Shainberg, B., Ken-Dror, S., Treygerman, O., Rouach, T., Lowenthal, S., Shohat, T., & Cohen, D. (2016). Trends in the epidemiology of campylobacteriosis in Israel (1999-2012). Foodborne Pathogens and Disease, 13(8), 448–455. https://doi.org/10.1089/fpd.2015.2096
  8. Beier, R. C., Harvey, R. B., Hernandez, C. A., Hume, M. E., Andrews, K., Droleskey, R. E., Davidson, M. K., Bodeis-jones, S., Young, S., Duke, S. E., Anderson, R. C., Crippen, T. L., Poole, T. L., & Nisbet, D. J. (2018). Interactions of organic acids with Campylobacter coli from swine. Cdc, 4–8.
  9. Bhavsar, S. P., & Kapadnis, B. P. (2006). Virulence factors of Campylobacter. The Internet Journal of Microbiology, 3(2). https://doi.org/10.5580/A4606
  10. Biswas, D., Hannon, S. J., Townsend, H. G. G., Potter, A., & Allan, B. J. (2011a). Genes coding for virulence determinants of Campylobacter jejuni in human clinical and cattle isolates from Alberta, Canada, and their potential role in colonization of poultry. International Microbiology, 14(1), 25–32. https://doi.org/10.2436/20.1501.01.132
  11. Biswas, D., Hannon, S. J., Townsend, H. G. G., Potter, A., & Allan, B. J. (2011b). Genes coding for virulence determinants of Campylobacter jejuni in human clinical and cattle isolates from Alberta, Canada, and their potential role in colonization of poultry. International Microbiology : The Official Journal of the Spanish Society for Microbiology, 14(1), 25–32. https://doi.org/10.2436/20.1501.01.132
  12. Bullman, S., Corcoran, D., O’Leary, J., Lucey, B., Byrne, D., & Sleator, R. D. (2011). Campylobacter ureolyticus: an emerging gastrointestinal pathogen? FEMS Immunology and Medical Microbiology, 61(2), 228–230. https://doi.org/10.1111/J.1574-695X.2010.00760.X
  13. Bunduruș, I. A., Balta, I., Ștef, L., Ahmadi, M., Peț, I., McCleery, D., & Corcionivoschi, N. (2023). Overview of Virulence and Antibiotic Resistance in Campylobacter spp. Livestock Isolates. Antibiotics, 12(2). https://doi.org/10.3390/ANTIBIOTICS12020402
  14. Campylobacter enteritis in Singapore – PubMed. (n.d.).
  15. Campylobacter jejuni from farm to fork: Campylobacteriosis and chicken meat | Journal of Current Science and Technology. (n.d.).
  16. Casabonne, C., Gonzalez, A., Aquili, V., Subils, T., & Balague, C. (2016). Prevalence of Seven Virulence Genes of Campylobacter jejuni Isolated from Patients with Diarrhea in Rosario, Argentina. International Journal of Infection 2016 3:4, 3(4), 37727. https://doi.org/10.17795/IJI-37727
  17. Cheng, Y. W., & Fischer, M. (2024). Campylobacter Infection. Encyclopedia of Gastroenterology, Second Edition, 424–427. https://doi.org/10.1016/B978-0-12-801238-3.11068-2
  18. Christidis, T., Pintar, K. D. M., Butler, A. J., Nesbitt, A., Thomas, M. K., Marshall, B., & Pollari, F. (2016). Campylobacter spp. Prevalence and Levels in Raw Milk: A Systematic Review and Meta-Analysis. Journal of Food Protection, 79(10), 1775–1783. https://doi.org/10.4315/0362-028X.JFP-15-480
  19. Clark, C. G., Price, L., Ahmed, R., Woodward, D. L., Melito, P. L., Rodgers, F. G., Jamieson, F., Ciebin, B., Li, A., & Ellis, A. (2003). Characterization of Waterborne Outbreak–associated Campylobacter jejuni, Walkerton, Ontario. Emerging Infectious Diseases, 9(10), 1232. https://doi.org/10.3201/EID0910.020584
  20. Coorevits, A., De Jonghe, V., Vandroemme, J., Reekmans, R., Heyrman, J., Messens, W., De Vos, P., & Heyndrickx, M. (2008). Comparative analysis of the diversity of aerobic spore-forming bacteria in raw milk from organic and conventional dairy farms. Systematic and Applied Microbiology, 31(2), 126–140. https://doi.org/10.1016/J.SYAPM.2008.03.002
  21. Da Silva, R. A., Arenas, N. E., Luiza, V. L., Bermudez, J. A. Z., & Clarke, S. E. (2023). Regulations on the Use of Antibiotics in Livestock Production in South America: A Comparative Literature Analysis. Antibiotics, 12(8), 1303. https://doi.org/10.3390/ANTIBIOTICS12081303/S1
  22. de Kraker, M. E. A., Stewardson, A. J., & Harbarth, S. (2016). Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Medicine, 13(11), 1002184. https://doi.org/10.1371/JOURNAL.PMED.1002184
  23. Del Collo, L. P., Karns, J. S., Biswas, D., Lombard, J. E., Haley, B. J., Kristensen, R. C., Kopral, C. A., Fossler, C. P., & Van Kessel, J. A. S. (2017). Prevalence, antimicrobial resistance, and molecular characterization of Campylobacter spp. in bulk tank milk and milk filters from US dairies. Journal of Dairy Science, 100(5), 3470–3479. https://doi.org/10.3168/jds.2016-12084
  24. Del Grosso, M., Northwood, J. G. E., Farrell, D. J., & Pantosti, A. (2007). The macrolide resistance genes erm(B) and mef(E) are carried by Tn2010 in dual-gene Streptococcus pneumoniae isolates belonging to clonal complex CC271. Antimicrobial Agents and Chemotherapy, 51(11), 4184–4186. https://doi.org/10.1128/AAC.00598-07/ASSET/B38CF75B-A4F2-4ED4-83FC-F8F59E324323/ASSETS/GRAPHIC/ZAC0110768840001.JPEG
  25. Dingle, K. E., Van den Braak, N., Colles, F. M., Price, L. J., Woodward, D. L., Rodgers, F. G., Endtz, H. P., Van Belkum, A., & Maiden, M. C. J. (2001). Sequence typing confirms that Campylobacter jejuni strains associated with Guillain-Barré and Miller-Fisher syndromes are of diverse genetic lineage, serotype, and flagella type. Journal of Clinical Microbiology, 39(9), 3346–3349. https://doi.org/10.1128/JCM.39.9.3346-3349.2001
  26. Domingues, A. R., Pires, S. M., Halasa, T., & Hald, T. (2012). Source attribution of human campylobacteriosis using a meta-analysis of case-control studies of sporadic infections. Epidemiology and Infection, 140(6), 970–981. https://doi.org/10.1017/S0950268811002676
  27. El-Zamkan, M. A., & Hameed, K. G. A. (2016). Prevalence of Campylobacter jejuni and Campylobacter coli in raw milk and some dairy products. Veterinary World, 9(10), 1147. https://doi.org/10.14202/VETWORLD.2016.1147-1151
  28. FAO/WHO. (2009). Risk assessment of Campylobacter spp in broiler chickens: Technical Report. In Microbiological Risk Assessment Series No 12 (Vol. 180, Issue 2).
  29. Food and Agriculture Organization of the United Nations., World Health Organization., & World Health Organization. Department of Food Safety, Z. and F. D. (2009). Salmonella and campylobacter in chicken meat : meeting report. 49.
  30. Frost, J. A., Gillespie, I. A., & O’Brien, S. J. (2002). Public health implications of campylobacter outbreaks in England and Wales, 1995-9: epidemiological and microbiological investigations. Epidemiology and Infection, 128(2), 111. https://doi.org/10.1017/S0950268802006799
  31. Gibreel, A., & Taylor, D. E. (2006). Macrolide resistance in Campylobacter jejuni and Campylobacter coli. Journal of Antimicrobial Chemotherapy, 58(2), 243–255. https://doi.org/10.1093/JAC/DKL210
  32. Gibreel, A., Wetsch, N. M., & Taylor, D. E. (2007). Contribution of the CmeABC Efflux Pump to Macrolide and Tetracycline Resistance in Campylobacter jejuni. Antimicrobial Agents and Chemotherapy, 51(9), 3212. https://doi.org/10.1128/AAC.01592-06
  33. Gilbreath, J. J., Cody, W. L., Merrell, D. S., & Hendrixson, D. R. (2011). Change Is Good : Variations in Common Biological Mechanisms in the Epsilonproteobacterial Genera Campylobacter and Helicobacter. 75(1), 84–132. https://doi.org/10.1128/MMBR.00035-10
  34. Gölz, G., Kittler, S., Malakauskas, M., & Alter, T. (2018). Survival of Campylobacter in the Food Chain and the Environment. Current Clinical Microbiology Reports, 5(2), 126–134. https://doi.org/10.1007/S40588-018-0092-Z
  35. Goni, M. D., Muhammad, I. J., Goje, M., Abatcha, M. G., Bitrus, A. A., & Abbas, M. A. (2017). Campylobacter in dogs and cats; Its detection and public health significance: A review. Advances in Animal and Veterinary Sciences, 5(6), 239–248. https://doi.org/10.17582/JOURNAL.AAVS/2017/5.6.239.248
  36. Grzybowska-Chlebowczyk, U., Kalita, B., Flak-Wancerz, A., Jasielska, M., Wiȩcek, S., Wojcieszyn, M., Horowska-Ziaja, S., Chlebowczyk, W., & Woś, H. (2013). Clinical course of Campylobacter infections in children. Pediatria Polska, 88(4), 329–334. https://doi.org/10.1016/J.PEPO.2013.05.004
  37. Ha, D. R., Haste, N. M., & Gluckstein, D. P. (2019). The Role of Antibiotic Stewardship in Promoting AppropriateAntibiotic Use. American Journal of Lifestyle Medicine, 13(4), 376. https://doi.org/10.1177/1559827617700824
  38. Haddock, G., Mullin, M., MacCallum, A., Sherry, A., Tetley, L., Watson, E., Dagleish, M., Smith, D. G. E., & Everest, P. (2010). Campylobacter jejuni 81-176 forms distinct microcolonies on in vitro-infected human small intestinal tissue prior to biofilm formation. Microbiology, 156(10), 3079–3084. https://doi.org/10.1099/mic.0.039867-0
  39. Hall, C. M., & Page, S. (2012). Tourism in South and Southeast Asia: Issues and cases. Tourism in South and Southeast Asia: Issues and Cases, 1–293. https://doi.org/10.4324/9780080519425
  40. Hansson, I., Sandberg, M., Habib, I., Lowman, R., & Engvall, E. O. (2018). Knowledge gaps in control of Campylobacter for prevention of campylobacteriosis. Transboundary and Emerging Diseases, 65, 30–48. https://doi.org/10.1111/TBED.12870
  41. Helmy, Y. A., Taha-Abdelaziz, K., Hawwas, H. A. E. H., Ghosh, S., AlKafaas, S. S., Moawad, M. M. M., Saied, E. M., Kassem, I. I., & Mawad, A. M. M. (2023). Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics 2023, Vol. 12, Page 274, 12(2), 274. https://doi.org/10.3390/ANTIBIOTICS12020274
  42. Heredia, N., & García, S. (2018). Animals as sources of food-borne pathogens: A review. Animal Nutrition, 4(3), 250–255. https://doi.org/10.1016/j.aninu.2018.04.006
  43. Hernandez, L., & Green, P. H. (2006). Extraintestinal manifestations of celiac disease. Current Gastroenterology Reports, 8(5), 383–389. https://doi.org/10.1007/S11894-006-0023-7
  44. Heuvelink, A. E., van Heerwaarden, C., Zwartkruis-Nahuis, A., Tilburg, J. J. H. C., Bos, M. H., Heilmann, F. G. C., Hofhuis, A., Hoekstra, T., & de Boer, E. (2009). Two outbreaks of campylobacteriosis associated with the consumption of raw cows’ milk. International Journal of Food Microbiology, 134(1–2), 70–74. https://doi.org/10.1016/J.IJFOODMICRO.2008.12.026
  45. Hlashwayo, D. F., Sigaúque, B., Noormahomed, E. V., Afonso, S. M. S., Mandomando, I. M., & Bila, C. G. (2021). A systematic review and meta-analysis reveal that Campylobacter spp. and antibiotic resistance are widespread in humans in sub-Saharan Africa. PLoS ONE, 16(1). https://doi.org/10.1371/JOURNAL.PONE.0245951
  46. Hofreuter, D., Tsai, J., Watson, R. O., Novik, V., Altman, B., Benitez, M., Clark, C., Perbost, C., Jarvie, T., Du, L., & Galán, J. E. (2006). Unique features of a highly pathogenic Campylobacter jejuni strain. Infection and Immunity, 74(8), 4694–4707. https://doi.org/10.1128/IAI.00210-06
  47. Hur, K., Lee, E., Kang, J., & Lee, Y. (2018). Campylobacter fetus Peritonitis in a Patient with Continuous Ambulatory Peritoneal Dialysis : A First Case Report in Korea. 21(1), 2288–2290.
  48. Hwang, S., Zhang, Q., Ryu, S., & Jeon, B. (2012). Transcriptional Regulation of the CmeABC Multidrug Efflux Pump and the KatA Catalase by CosR in Campylobacter jejuni. Journal of Bacteriology, 194(24), 6883. https://doi.org/10.1128/JB.01636-12
  49. Igwaran, A., & Okoh, A. I. (2019). Human campylobacteriosis: A public health concern of global importance. Heliyon, 5(11), e02814. https://doi.org/10.1016/J.HELIYON.2019.E02814
  50. Iovine, N. M. (2013). Resistance mechanisms in Campylobacter jejuni. Virulence, 4(3), 230. https://doi.org/10.4161/VIRU.23753
  51. Janssen, R., Krogfelt, K. A., Cawthraw, S. A., Van Pelt, W., Wagenaar, J. A., & Owen, R. J. (2008). Host-pathogen interactions in Campylobacter infections: the host perspective. Clinical Microbiology Reviews, 21(3), 505–518. https://doi.org/10.1128/CMR.00055-07
  52. Jeon, B., Wang, Y., Hao, H., Barton, Y. W., & Zhang, Q. (2011). Contribution of CmeG to antibiotic and oxidative stress resistance in Campylobacter jejuni. Journal of Antimicrobial Chemotherapy, 66(1), 79. https://doi.org/10.1093/JAC/DKQ418
  53. Jin, S., Joe, A., Lynett, J., Hani, E. K., Sherman, P., & Chan, V. L. (2001). JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Molecular Microbiology, 39(5), 1225–1236. https://doi.org/10.1111/J.1365-2958.2001.02294.X
  54. Kaakoush, N. O., Castaño-Rodríguez, N., Mitchell, H. M., & Man, S. M. (2015a). Global Epidemiology of Campylobacter Infection. Clinical Microbiology Reviews, 28(3), 687–720. https://doi.org/10.1128/CMR.00006-15
  55. Kaakoush, N. O., Castaño-Rodríguez, N., Mitchell, H. M., & Man, S. M. (2015b). Global Epidemiology of Campylobacter Infection. Clinical Microbiology Reviews, 28(3), 687. https://doi.org/10.1128/CMR.00006-15
  56. Kemp, R., Leatherbarrow, A. J. H., Williams, N. J., Hart, C. A., Clough, H. E., Turner, J., Wright, E. J., & French, N. P. (2005). Prevalence and genetic diversity of Campylobacter spp. in environmental water samples from a 100-square-kilometer predominantly dairy farming area. Applied and Environmental Microbiology, 71(4), 1876–1882. https://doi.org/10.1128/AEM.71.4.1876-1882.2005
  57. Konkel, M. E., Klena, J. D., Rivera-Amill, V., Monteville, M. R., Biswas, D., Raphael, B., & Mickelson, J. (2004). Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. Journal of Bacteriology, 186(11), 3296–3303. https://doi.org/10.1128/JB.186.11.3296-3303.2004
  58. Labarca, J. A., Sturgeon, J., Borenstein, L., Salem, N., Harvey, S. M., Lehnkering, E., Reporter, R., & Mascola, L. (2002). Campylobacter upsaliensis: Another pathogen for consideration in the United States. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 34(11), 59–60. https://doi.org/10.1086/340266
  59. Larson, C. L., Shah, D. H., Dhillon, A. S., Call, D. R., Ahn, S., Haldorson, G. J., Davitt, C., & Konkel, M. E. (2008). Campylobacter jejuni invade chicken LMH cells inefficiently and stimulate differential expression of the chicken CXCLi1 and CXCLi2 cytokines. Microbiology (Reading, England), 154(Pt 12), 3835–3847. https://doi.org/10.1099/MIC.0.2008/021279-0
  60. Lee, G., Pan, W., Peñataro Yori, P., Paredes Olortegui, M., Tilley, D., Gregory, M., Oberhelman, R., Burga, R., Chavez, C. B., & Kosek, M. (2013). Symptomatic and Asymptomatic Campylobacter Infections Associated with Reduced Growth in Peruvian Children. PLoS Neglected Tropical Diseases, 7(1), 1–9. https://doi.org/10.1371/journal.pntd.0002036
  61. Lin, D. M., Koskella, B., & Lin, H. C. (2017). Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeutics, 8(3), 162. https://doi.org/10.4292/WJGPT.V8.I3.162
  62. Liu, F., Ma, R., Wang, Y., & Zhang, L. (2018). The Clinical Importance of Campylobacter concisus and Other Human Hosted Campylobacter Species. Frontiers in Cellular and Infection Microbiology, 8(JUL). https://doi.org/10.3389/FCIMB.2018.00243
  63. Liu, J., Qiao, B., Cai, Y., Tan, Z., & Deng, N. (2023). Diarrhea accompanies intestinal inflammation and intestinal mucosal microbiota dysbiosis during fatigue combined with a high-fat diet. BMC Microbiology, 23(1). https://doi.org/10.1186/S12866-023-02896-9
  64. Liu, K. C., Jinneman, K. C., Neal-Mckinney, J., Wu, W. H., & Rice, D. H. (2017). Simultaneous Identification of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari with SmartCycler-Based Multiplex Quantitative Polymerase Chain Reaction. Foodborne Pathogens and Disease, 14(7), 371–378. https://doi.org/10.1089/fpd.2016.2245
  65. Llor, C., & Bjerrum, L. (2014). Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Therapeutic Advances in Drug Safety, 5(6), 229. https://doi.org/10.1177/2042098614554919
  66. Ma, L., Feng, J., Zhang, J., & Lu, X. (2022). Campylobacter biofilms. Microbiological Research, 264, 127149. https://doi.org/10.1016/J.MICRES.2022.127149
  67. Ma, L., Konkel, M. E., & Lu, X. (2021). Antimicrobial Resistance Gene Transfer from Campylobacter jejuni in Mono- and Dual-Species Biofilms. Applied and Environmental Microbiology, 87(15), 1–17. https://doi.org/10.1128/AEM.00659-21
  68. Maësaar, M., Tedersoo, T., Meremaë, K., & Roasto, M. (2020). The source attribution analysis revealed the prevalent role of poultry over cattle and wild birds in human campylobacteriosis cases in the Baltic States. PLoS ONE, 15(7). https://doi.org/10.1371/JOURNAL.PONE.0235841
  69. Magajna, B., & Schraft, H. (2015). Evaluation of Propidium Monoazide and Quantitative PCR To Quantify Viable Campylobacter jejuni Biofilm and Planktonic Cells in Log Phase and in a Viable but Nonculturable State. Journal of Food Protection, 78(7), 1303–1311. https://doi.org/10.4315/0362-028X.JFP-14-583
  70. Man, S. M. (2011). The clinical importance of emerging Campylobacter species. Nature Reviews. Gastroenterology & Hepatology, 8(12), 669–685. https://doi.org/10.1038/NRGASTRO.2011.191
  71. Martínez, I., Mateo, E., Churruca, E., Girbau, C., Alonso, R., & Fernández-Astorga, A. (2006). Detection of cdtA, cdtB, and cdtC genes in Campylobacter jejuni by multiplex PCR. International Journal of Medical Microbiology : IJMM, 296(1), 45–48. https://doi.org/10.1016/J.IJMM.2005.08.003
  72. Mavri, A., & Možina, S. S. (2013). Effects of efflux-pump inducers and genetic variation of the multidrug transporter cmeB in biocide resistance of Campylobacter jejuni and Campylobacter coli. Journal of Medical Microbiology, 62(Pt 3), 400–411. https://doi.org/10.1099/JMM.0.052316-0
  73. Merali, H. S., Morgan, M. S., & Boonshuyar, C. (2018). Diarrheal knowledge and preventative behaviors among the caregivers of children under 5 years of age on the Tonle Sap Lake, Cambodia. Research and Reports in Tropical Medicine, 9, 35. https://doi.org/10.2147/RRTM.S156702
  74. Merrick, B., Tamilarasan, A. G., Luber, R., Yong, P. F. K., Cheent, K., Irving, P. M., Meda, M., & Goldenberg, S. D. (2022). Recurrent Campylobacter jejuni Infection in an Immunodeficient Patient Treated with Repeated Faecal Microbiota Transplant (FMT)—A Case Report. Infectious Disease Reports 2022, Vol. 14, Pages 56-62, 14(1), 56–62. https://doi.org/10.3390/IDR14010007
  75. Miller, W. G., Yee, E., Chapman, M. H., Smith, T. P. L., Bono, J. L., Huynh, S., Parker, C. T., Vandamme, P., Luong, K., & Korlach, J. (2014). Comparative Genomics of the Campylobacter lari Group. 6(12), 3252–3266. https://doi.org/10.1093/gbe/evu249
  76. Morishita, S., Fujiwara, H., Murota, H., Maeda, Y., Hara, A., & Horii, T. (2013). Bloodstream infection caused by Campylobacter lari. Journal of Infection and Chemotherapy, 19(2), 333–337. https://doi.org/10.1007/S10156-012-0471-Y
  77. Mossong, J., Mughini-Gras, L., Penny, C., Devaux, A., Olinger, C., Losch, S., Cauchie, H. M., Van Pelt, W., & Ragimbeau, C. (2016). Human Campylobacteriosis in Luxembourg, 2010-2013: A Case-Control Study Combined with Multilocus Sequence Typing for Source Attribution and Risk Factor Analysis. Scientific Reports, 6. https://doi.org/10.1038/SREP20939
  78. Mughini-Gras, L., Pijnacker, R., Coipan, C., Mulder, A. C., Fernandes Veludo, A., de Rijk, S., van Hoek, A. H. A. M., Buij, R., Muskens, G., Koene, M., Veldman, K., Duim, B., van der Graaf-van Bloois, L., van der Weijden, C., Kuiling, S., Verbruggen, A., van der Giessen, J., Opsteegh, M., van der Voort, M., … Franz, E. (2021). Sources and transmission routes of campylobacteriosis: A combined analysis of genome and exposure data. Journal of Infection, 82(2), 216–226. https://doi.org/10.1016/j.jinf.2020.09.039
  79. Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
  80. Newell, D. G., Mughini-Gras, L., Kalupahana, R. S., & Wagenaar, J. A. (2017). Campylobacter epidemiology—sources and routes of transmission for human infection. Campylobacter: Features, Detection, and Prevention of Foodborne Disease, 85–110. https://doi.org/10.1016/B978-0-12-803623-5.00005-8
  81. Nilsson, A., Johansson, C., Skarp, A., Kaden, R., Bertilsson, S., & Rautelin, H. (2018a). Survival of Campylobacter jejuni and Campylobacter coli water isolates in lake and well water. APMIS, 126(9), 762–770. https://doi.org/10.1111/APM.12879
  82. Nilsson, A., Johansson, C., Skarp, A., Kaden, R., Bertilsson, S., & Rautelin, H. (2018b). Survival of Campylobacter jejuni and Campylobacter coli water isolates in lake and well water. APMIS : Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 126(9), 762–770. https://doi.org/10.1111/APM.12879
  83. O’Callaghan, T. F., Sugrue, I., Hill, C., Ross, R. P., & Stanton, C. (2018). Nutritional aspects of raw milk: A beneficial or hazardous food choice. Raw Milk: Balance Between Hazards and Benefits, 127–148. https://doi.org/10.1016/B978-0-12-810530-6.00007-9
  84. Oliver, S. P., Jayarao, B. M., & Almeida, R. A. (2005). Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathogens and Disease, 2(2), 115–129. https://doi.org/10.1089/FPD.2005.2.115
  85. Ono, K., & Yamamoto, K. (1999). Contamination of meat with Campylobacter jejuni in Saitama, Japan. International Journal of Food Microbiology, 47(3), 211–219. https://doi.org/10.1016/S0168-1605(99)00015-X
  86. Ortega, Á., Zhulin, I. B., & Krell, T. (2017). Sensory Repertoire of Bacterial Chemoreceptors. Microbiology and Molecular Biology Reviews : MMBR, 81(4). https://doi.org/10.1128/MMBR.00033-17
  87. Pacanowski, J., Lalande, V., Lacombe, K., Boudraa, C., Lesprit, P., Legrand, P., Trystram, D., Kassis, N., Arlet, G., Mainardi, J. L., Doucet-Populaire, F., Girard, P. M., & Meynard, J. L. (2008). Campylobacter bacteremia: clinical features and factors associated with fatal outcome. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 47(6), 790–796. https://doi.org/10.1086/591530
  88. Pal, M. (2017). Campylobacter jejuni: An Emerging Foodborne Pathogen of Global Significance. Journal of Experimental Food Chemistry, 03(03). https://doi.org/10.4172/2472-0542.1000130
  89. Pitkänen, T. (2013). Review of Campylobacter spp. in drinking and environmental waters. Journal of Microbiological Methods, 95(1), 39–47. https://doi.org/10.1016/J.MIMET.2013.06.008
  90. Poly, F., & Guerry, P. (2008). Pathogenesis of Campylobacter. Current Opinion in Gastroenterology, 24(1), 27–31. https://doi.org/10.1097/MOG.0B013E3282F1DCB1
  91. Premarathne, J. M. K. J. K., Satharasinghe, D. A., Huat, J. T. Y., Basri, D. F., Rukayadi, Y., Nakaguchi, Y., Nishibuchi, M., & Radu, S. (2017). Impact of human Campylobacter infections in Southeast Asia: The contribution of the poultry sector. Critical Reviews in Food Science and Nutrition, 57(18), 3971–3986. https://doi.org/10.1080/10408398.2016.1266297
  92. Premarathne, K., & Amila, D. (n.d.). ACCEPTED MANUSCRIPT. 37–99.
  93. Qin, S., Wang, Y., Zhang, Q., Chen, X., Shen, Z., Deng, F., Wu, C., & Shen, J. (2012). Identification of a Novel Genomic Island Conferring Resistance to Multiple Aminoglycoside Antibiotics in Campylobacter coli. Antimicrobial Agents and Chemotherapy, 56(10), 5332. https://doi.org/10.1128/AAC.00809-12
  94. Rakprasit, J., Nakamura, K., Seino, K., & Morita, A. (2017). Healthcare use for communicable diseases among migrant workers in comparison with Thai workers. Industrial Health, 55(1), 67. https://doi.org/10.2486/INDHEALTH.2016-0107
  95. S, S. (2016). Microbiological Safety Concerns of Raw Milk. Journal of Food Nutrition and Dietetics, 01(02). https://doi.org/10.19104/JFND.2016.105
  96. Sails, A. D., Bolton, F. J., Fox, A. J., Wareing, D. R. A., & Greenway, D. L. A. (2002). Detection of Campylobacter jejuni and Campylobacter coli in Environmental Waters by PCR Enzyme-Linked Immunosorbent Assay. Applied and Environmental Microbiology, 68(3), 1319. https://doi.org/10.1128/AEM.68.3.1319-1324.2002
  97. Sales-Ortells, H., & Medema, G. (2015). Microbial health risks associated with exposure to stormwater in a water plaza. Water Research, 74, 34–46. https://doi.org/10.1016/J.WATRES.2015.01.044
  98. Scallan, E., Hoekstra, R. M., Mahon, B. E., Jones, T. F., & Griffin, P. M. (2015). An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years. Epidemiology and Infection, 143(13), 2795–2804. https://doi.org/10.1017/S0950268814003185
  99. Schlundt, J., Toyofuku, H., Jansen, J., & Herbst, S. A. (2004). Emerging food-borne zoonoses. Revue Scientifique et Technique (International Office of Epizootics), 23(2), 513–533. https://doi.org/10.20506/RST.23.2.1506
  100. Schönberg-Norio, D., Takkinen, J., Hänninen, M. L., Katila, M. L., Kaukoranta, S. S., Mattila, L., & Rautelin, H. (2004). Swimming and Campylobacter infections. Emerging Infectious Diseases, 10(8), 1474–1477. https://doi.org/10.3201/EID1008.030924
  101. Science, C., Science, C., Sciences, V. P., Medicine, V., Mindanao, S., Sciences, V. P., Medicine, V., Technology, V., Medicine, V., & Mindanao, S. (2021). Campylobacter jejuni from farm to fork: Campylobacteriosis and chicken meat Jan Clyden B. Tenorio 1,2* and Vrenelie II D. Flores 1,3. 0656(December), 457–467. https://doi.org/10.14456/jcst.2021.45
  102. Seguino, A., Chintoan-Uta, C., Smith, S. H., & Shaw, D. J. (2018). Public health significance of Campylobacter spp. colonisation of wild game pheasants (Phasianus colchicus) in Scotland. Food Microbiology, 74, 163–170. https://doi.org/10.1016/j.fm.2018.04.002
  103. Shane, S. M. (2000). Campylobacter infection of commercial poultry. Revue Scientifique et Technique (International Office of Epizootics), 19(2), 376–395. https://doi.org/10.20506/RST.19.2.1224
  104. Sheppard, S. K., Colles, F. M., McCarthy, N. D., Strachan, N. J. C., Ogden, I. D., Forbes, K. J., Dallas, J. F., & Maiden, M. C. J. (2011). Niche segregation and genetic structure of Campylobacter jejuni populations from wild and agricultural host species. Molecular Ecology, 20(16), 3484–3490. https://doi.org/10.1111/J.1365-294X.2011.05179.X
  105. Skarp, C. P. A., Hänninen, M. L., & Rautelin, H. I. K. (2016). Campylobacteriosis: the role of poultry meat. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 22(2), 103–109. https://doi.org/10.1016/J.CMI.2015.11.019
  106. Snelling, W. J., Matsuda, M., Moore, J. E., & Dooley, J. S. G. (2005). Campylobacter jejuni. 297–302. https://doi.org/10.1111/j.1472-765X.2005.01788.x
  107. Steinhauserova, I., Fojtikova, K., & Klimes, J. (2000). The incidence and PCR detection of Campylobacter upsaliensis in dogs and cats. Letters in Applied Microbiology, 31(3), 209–212. https://doi.org/10.1046/j.1365-2672.2000.00799.x
  108. Szosland-Fałtyn, A., Bartodziejska, B., Królasik, J., Paziak-Domańska, B., Korsak, D., & Chmiela, M. (2018). The Prevalence of Campylobacter spp. in Polish Poultry Meat. Polish Journal of Microbiology, 67(1), 117–120. https://doi.org/10.5604/01.3001.0011.6152
  109. Tack, D. M., Marder, E. P., Griffin, P. M., Cieslak, P. R., Dunn, J., Hurd, S., Scallan, E., Lathrop, S., Muse, A., Ryan, P., Smith, K., Tobin-D’Angelo, M., Vugia, D. J., Holt, K. G., Wolpert, B. J., Tauxe, R., & Geissler, A. L. (2019). Preliminary Incidence and Trends of Infections with Pathogens Transmitted Commonly Through Food — Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2015–2018. MMWR. Morbidity and Mortality Weekly Report, 68(16), 369–373. https://doi.org/10.15585/mmwr.mm6816a2
  110. Taheri, N., Fällman, M., Wai, S. N., & Fahlgren, A. (2019). Accumulation of virulence-associated proteins in Campylobacter jejuni Outer Membrane Vesicles at human body temperature. Journal of Proteomics, 195(January), 33–40. https://doi.org/10.1016/j.jprot.2019.01.005
  111. Van Vliet, A. H. M., & Ketly, J. M. (2001). Pathogenesis of enteric Campylobacter infection. Journal of Applied Microbiology, 90(S6), 45S-56S. https://doi.org/10.1046/J.1365-2672.2001.01353.X
  112. Vieira, A., Seddon, A. M., & Karlyshev, A. V. (2015). Campylobacter-Acanthamoeba interactions. Microbiology (Reading, England), 161(Pt 5), 933–947. https://doi.org/10.1099/MIC.0.000075
  113. Vu Nguyen, T., Le Van, P., Le Huy, C., Nguyen Gia, K., & Weintraub, A. (2006). Etiology and epidemiology of diarrhea in children in Hanoi, Vietnam. International Journal of Infectious Diseases, 10(4), 298–308. https://doi.org/10.1016/j.ijid.2005.05.009
  114. Wagenaar, J. A., Van Bergen, M. A. P., Blaser, M. J., Tauxe, R. V., Newell, D. G., & Van Putten, J. P. M. (2014). Campylobacter fetus Infections in Humans: Exposure and Disease. Clinical Infectious Diseases, 58(11), 1579–1586. https://doi.org/10.1093/CID/CIU085
  115. Wang, Y., Yao, H., Deng, F., Liu, D., Zhang, Y., & Shen, Z. (2015). Identification of a novel fosXCC gene conferring fosfomycin resistance in Campylobacter. The Journal of Antimicrobial Chemotherapy, 70(4), 1261–1263. https://doi.org/10.1093/JAC/DKU488
  116. Wangroongsarb, P., Cheunban, N., Jittaprasatsin, C., Kamthalang, T., Saipradit, N., Chaichana, P., Pulsrikarn, C., Parnmen, S., & Sripichai, O. (2021). Prevalence and antimicrobial susceptibility of Campylobacter isolated from retail chickens in Thailand. International Journal of Food Microbiology, 339. https://doi.org/10.1016/J.IJFOODMICRO.2020.109017
  117. Whiley, H., van den Akker, B., Giglio, S., & Bentham, R. (2013). The Role of Environmental Reservoirs in Human Campylobacteriosis. International Journal of Environmental Research and Public Health, 10(11), 5886. https://doi.org/10.3390/IJERPH10115886
  118. WHO. (2013). The global view of campylobacteriosis-report of an expert consultation. WHO, 1–57.
  119. Wieczorek, K., Denis, E., & Osek, J. (2015). Comparative analysis of antimicrobial resistance and genetic diversity of Campylobacter from broilers slaughtered in Poland. International Journal of Food Microbiology, 210, 24–32. https://doi.org/10.1016/J.IJFOODMICRO.2015.06.006
  120. Wilson, D. J., Gabriel, E., Leatherbarrow, A. J. H., Cheesbrough, J., Gee, S., Bolton, E., Fox, A., Fearnhead, P., Hart, C. A., & Diggle, P. J. (2008). Tracing the Source of Campylobacteriosis. PLOS Genetics, 4(9), e1000203. https://doi.org/10.1371/JOURNAL.PGEN.1000203
  121. Zarske, M., Luu, H. Q., Deneke, C., Knüver, M.-T., Thieck, M., Hoang, H. T. T., Bretschneider, N., Pham, N. T., Huber, I., & Stingl, K. (2024). Identification of knowledge gaps in whole-genome sequence analysis of multi-resistant thermotolerant Campylobacter spp. BMC Genomics, 25(1), 156. https://doi.org/10.1186/S12864-024-10014-W
  122. Zhang, X., Zhou, Q., Tang, M., Pu, J., Zhang, J., Lu, J., Zhang, Y., & Gao, Y. (2021). Aminoglycoside Resistance and Possible Mechanisms in Campylobacter Spp. Isolated From Chicken and Swine in Jiangsu, China. Frontiers in Microbiology, 12, 716185. https://doi.org/10.3389/FMICB.2021.716185/BIBTEX