Article 2: ASSESSMENT OF MICROORGANISMS ASSOCIATED WITH THE PRODUCTION OF AMARANTH (Vol. Iss.1; pp. 12-27)

*Paul Omaye Joseph, Adewale Adebayo and Frank Ojochegbe Ojomah

Paul Omaye Joseph[1]*, Adewale Adebayo[2] and Frank Ojochegbe Ojomah[3]

*E-mail: joseph.po@ksu.edu.ng

 

A R T I C L E  I N F O

Article Type: Research

Received: 06, Sep. 2018.

Accepted: 05, Oct. 2018.

Published: 06, Oct. 2018.

 

 

A B S T R A C T

The objective of the present study was to determine the correlation of microorganisms isolated from amaranth to that isolated from soil and irrigation water. Samples of amaranth, soil and irrigation water were collected in dry and wet seasons of 2016 from farm sites in Koriko, Bassa LGA, Kogi State for microbial analyses. Following sample preparation and serial dilutions, three dilutions of each sample were plated out in duplicates on nutrient agar using the pour plate and streak methods. Pure cultures of each observed microorganism were purified using sub-culturing techniques, then cultural, microscopic and biochemical characteristics were used for identification of specific isolates. A total of eighteen microorganisms namely Bacillus spp, Bacillus cereus, Bacillus subtilis, Bacillus megaterium, Bacillus mycoides, Lactobacillus spp, Leuconostic spp, Micrococcus spp, Klebsiella spp, Pseudomonas spp, Escherichia coli, Enterobacter spp, Azotobacter spp, Staphylococcus spp, Salmonella spp, Serratia spp, Citrobacter spp and Flavobacterium spp were isolated. The results of this study revealed that all organisms in amaranth were present in the analysed soil and irrigation water. Several pathogenic bacteria such as Escherichia coli and Salmonella spp were involved in the contamination of amaranth on the farm, and this is of a high potential health hazard to consumers. Contaminated irrigation water and soil were possibly the sources of contamination of amaranth growing on the field. Farmers should be educated on the risk involved in the use of contaminated water for irrigation.

Keywords:

Amaranth, contamination, irrigation water, microorganisms, soil, pathogen

[1] Paul Omaye Joseph, Assistant Lecturer, Kogi State University, Anyigba, Nigeria

[2] Adewale Adebayo, Professor, Kogi State University, Anyigba, Nigeria

[3] Frank Ojochegbe Ojomah, Assistant Lecturer, Kogi State University, Anyigba, Nigeria

References

  1. Abdul-Raouf, U. M., Beuchat, L. R., & Ammar, M. S. (1993). Survival and growth of Escherichia coli 0157: H7 on salad vegetables. Applied Environmental Microbiology, 59, 1999–2006.
  2. Adegoke, A. A., & Komolafe, A. O. (2009). Multi-drug resistant Staphylococcus aureus in Ile-Ife, SouthWest Nigeria. International Journal of Medicine and Medical Sciences, 1(3), 68-72.
  3. Afolabi, O. R., Oloyede, A. R., & Agbaje, M. (2011). Bacterial quality and cytotoxicity screening of fresh vegetables irrigated with polluted water. Nat. Sci. Engr. Tech., 10(1), 31-40.
  4. Altekruse, S. F., Cohen, M. L., & Swerdlow, D. L. (1997). Emerging foodborne diseases. Infect. Dis., 3, 285-293.
  5. Amoah, P., Drechsel, P. & Abaidoo, R. C. (2005). Irrigated urban vegetable production in Ghana: sources of pathogen contamination and health risk reduction. Irrigation and Drainage, 54: S49–S61.
  6. Bean, N. H., Goulding, J. S., Daniels, M. T., & Angulo, F. J. (1997). Surveillance for foodborne disease outbreaks-United States, 1992-1998. Food Prot., 60, 1265-1286.
  7. Beuchat, L. R. (1996). Pathogenic microorganisms associated with fresh produce. Food Prot., 59, 204–216.
  8. CAC (Codex Alimentarius Commission), (2006). Report of the 38th Session of the Codex Committee on Food Hygiene. Houston, USA, 4 9 December 2006.
  9. Chalmers, R. M., Aird, H., & Bolton, F. J. (2000). Waterborne Escherichia coli J. Appl. Microbiol., 88, 124–132.
  10. Cliver, D. O. (1997). Foodborne viruses. In: Doyle MP, Beuchat LR, Montville TJ (eds.). Food Microbiology: Fundamentals and Frontiers, p. 437-446. Washington DC, American Society for Microbiology.
  11. Codex, A. (2007). Code of hygiene practice for fresh fruits and vegetables. Secretariate of the CODEX Alimantarius Commission, Joint FAO/WHO Food Standard programme, Vialedelle Terme di Caracalla, Rome Italy.
  12. D’Mello, J. P. F. (2003). Food safety: Contaminants and toxins. CABI Publishing, Wallingford, Oxon, UK, Cambridge, MA. p. 480
  13. Desta, W., & Diriba, M. (2016). Bacteriological contaminants of some fresh vegetables irrigated with Awetu river in Jimma town, SouthWestern Ethiopia. Advances in Biology, 2016, 27-38.
  14. Dhellot, J. R., Matouba, E., Maloumbi, M. G., Nzikou, J. M., Safou-Ngoma, D. G., Linder, M., Desobry, S., & Parmentier, M. (2006). Extraction, chemical composition and nutritional characterization of vegetable oils: Case of Amaranthus hybridus (Var 1 and 2) of Congo Brazzaville. African J. Biotechnol., 5(11), 1095-1101.
  15. Diaz, F. J., O’Geen, A. T., & Dahlgren, R. A. (2010). Efficacy of constructed wetlands for removal of bacterial contamination from agricultural return flows. Water Manag., 97, 1813–1821.
  16. Doyle, M. P. (1990). Fruit and vegetable safety – microbiological considerations. Sci., 25, 1478-1482.
  17. FAO/WHO. (2008). Microbiological hazards in fresh leafy vegetables and herbs: Meeting Report. Microbiological Risk Assessment Series no 14.
  18. Gerba, C. P. (2009). The role of water and water testing in produce safety. In “Microbial safety of fresh produce” (X. Fan, B. A. Niemira, C. J. Doona, F. E. Feeherty, and R. B. Gravani, Eds.), pp. 129–142. Wiley.
  19. Gilbert, R. J., de Louvois, J., & Donovan, T. (2000). Guidelines for the microbiological quality of some ready-to-eat sampled at the point of sale. Communicable and Publ. Health, 3(3), 163-167.
  20. Girvan, M. S., Bullimore, J., Pretty, J. N., Osborn, A. M., & Ball, A. S. (2003). Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Environ. Microbiol., 69, 1800–1809.
  21. Godon, R. E., Laskin, A. I., & Lechevalier, H. A. (1977). “The Genus Bacillus”. In Handbook of Microbiology: Eds., 1(2), 319-336, CRC Press, Cleveland, Ohio, USA.
  22. Grayston, S. J., Wang, S., Campbell, C. D., & Edwards, A. C. (1998). Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem., 30, 369–378.
  23. Guchi, B., & Ashenafi, M. (2010). Microbial load, prevalence and antibiograms of Salmonella and Shigella in lettuce and green pepper. Ethiopian J. Health Sci. 20, 43-47.
  24. Guo, X., Chen, J., Brackett, R. E., & Beuchat, L. R. (2002). Survival of salmonellae on tomatoes stored at high relative humidity, in soil, and on tomatoes in contact with soil. Appl. Environ. Microbiol., 65, 274–279.
  25. Hamilton, A. J., Stagnitti, F., Premier. R., Boland, A. M., & Hale, G. (2006). Quantitative microbial risk assessment models for consumption of raw vegetables irrigated with reclaimed water. Environ. Microbiol., 72, 3284-3290.
  26. http://www.codexanet/download/report/671/al 30_13e.pdf .
  27. http://www.eurosurveillance.org/ew/2005/050922.asp#1.
  28. Ibenyassine, K., AitMhand, R., Karamoko Y., Cohen, N., & Ennaji, M. M. (2006). Use of repetitive DNA sequences to determine the persistence of enteropathogenic Escherichia coli in vegetable and in soil grown in fields treated with contaminated irrigation water. Appl. Microbiol., 43, 528-533.
  29. Ijabadeniyi O. A. (2010). Effect of irrigation water quality on the microbiological safety of fresh vegetables (Ph.D. thesis), Pretoria University of Agricultural and Food Sciences, Johannesburg, South Africa.
  30. Ikpeme, E., Nfongeh, J., Eja, M. E., Etim, L., & Enyi-Idoh, K. (2011). Antibiotic susceptibility profiles of enteric bacterial isolates from dumpsite and water sources in a rural community in Cross River State. Nature and Sci., 9(5), 46-50.
  31. Islam, M., Doyle, M. P., Phatak, S. C., Millner, P., & Jiang, X. (2004). Persistence of enterohemorrhagic Escherichia coli O157:H7 in soil and on leaf lettuce and parsley grown in fields treated with contaminated manure composts or irrigation water. Food Prot. 67, 1365–1370.
  32. Leifert, C., Ball, K., Volakakis, N., & Cooper, C. (2008). Control of enteric pathogens in ready-to-eat vegetable crop in organic and ‘low input’ production systems: a HACCP-based approach. Appl. Microbiol., 105(4), 931–950.
  33. Mandrell, R. E. (2011). Tracing pathogens in fruit and vegetable production chains. In “Tracing pathogens in the food chain” (S. Brul, P. M. Fratamico, and T. McMeekin, Eds.), pp. 548–595. Woodhead Publishing Ltd., Cambridge, UK.
  34. Marschner, P., Yang, C. H., Lieberei, R., & Crowley, D. E. (2001). Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem., 33, 1437–1445.
  35. McMahon, M. A. S., & Wilson, I. G. (2001). The occurrence of enteric pathogens and Aeromonas species in organic vegetables. Int. J. Food Microbiol., 70, 155–162.
  36. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., & Shapiro, C. (1999). Food related illness and death in the United States. Emerging Infectious Disease J., 5, 607-625.
  37. Melloul, A. A., Hassani, L., & Rajouk, L. (2001). Salmonella contamination of vegetables irrigated with untreated wastewater. World J. Microbiol. Biotechnol., 17, 207–209.
  38. Mohammed, M. I., & Sharif, N. (2011). Mineral composition of some leafy vegetables consumed in Kano, Nigeria. Nigerian J. Basic. Appl. Sci., 19(2), 208-211.
  39. Nesse, L., Refsum, T., Heir, E., Nordby, K., Vardund, T., & Holstad, G. (2005). Molecular epidemiology of Salmonella isolates from gulls, fish-meal factories, feed factories, animals and humans in Norway based on pulsed-field gel electrophoresis. Epidemiol. and Infect., 133, 53–58.
  40. Obi, C. N. (2014). Bacteriological assessment of vegetables cultivated in soils treated with poultry manure and the manure-treated soil samples. J. Microbiol. Res., 2(6),189-200.
  41. Okafo, C. N., Umoh, V. J., & Galadima, M. (2003). Occurrence of pathogens on vegetables harvested from soils irrigated with contaminated streams. Total Environ., 311, 49–56.
  42. Petterson, S. R., Ashbolt, N. J., & Sharma, A. (2001). Microbial risks from wastewater irrigation of salad crops: A screening-level risk assessment. Water Environ. Res., 73(6), 667–672.
  43. Santamaria, J., & Toranzos, G. A. (2003). Enteric pathogens and soil: a short review. Microbiol., 6(1), 5-9.
  44. Smith, K. J., Neafie, R., Yeager, J., & Skelton, G. (1999). Micrococcus folliculitis in HIV-1 disease. J. Derm., 141(3), 558-561.
  45. Soderstrom, A., Lindberg, A., & Andersson, Y. (2005). EHEC O157 outbreak in Sweden from locally produced lettuce, August–September 2005. Euro Surveill 10(38): Article 1.
  46. Solomon, E. B., Yaron, S., & Matthews, K. R. (2002). Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Appl. Environ. Microbiol., 68, 397–400.
  47. Song, I., Stine, S. W., Choi, C. Y., & Gerba, C. P. (2006). Comparison of crop contamination by microorganisms during subsurface drip and furrow irrigation. Environ. Eng., 132, 1243–1248.
  48. Speer, C. A. (1997). Protozoan parasites acquired from food and water. In: Doyle, M. P., Beuchat, L. R., Montville, T. J. (eds.). Food Microbiology: Fundamentals and Frontiers, p. 478- 493. Washington DC, Amer. Soc. Microbiol.
  49. Steele, M., & Odumeru, J. (2004). Irrigation water as source of foodborne pathogens on fruits and vegetables. J. Food Prot. 67(12), 2839–2849.
  50. Stine, S., Song, I., Choi, C., & Gerba, C. (2005). Application of microbial risk assessment to the development of standards for enteric pathogens in water used to irrigate fresh produce. Food Prot., 68, 913–918.
  51. Thurston-Enriquez, J., Watt, A. P., Dowd, S. E., Enriquez, R., Pepper, I. L., & Gerba, C. P. (2002). Detection of protozoan parasites and microsporidia in irrigation waters used for crop production. Food Prot,, 65, 378–382.
  52. Tyler, H. L., & Triplett, E. W. (2008). Plants as a habitat for beneficial and/or human pathogenic bacteria. Rev. Phytopathol., 46, 53-63.
  53. Tyrrel, S. F., & Quinton, J. N. (2003). Overland flow transport of pathogens from agricultural land receiving faecal wastes, Microbiol., 94, 87-93.
  54. Wang, G., & Doyle, M. P. (1998). Survival of enterohemorrhagic Escherichia coli O157:H7 in water. Food Prot., 61, 662–667.
  55. Wieland, G., Neumann, R., & Backhaus, H. (2001). Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Environ. Microbiol., 67, 5849–5854.
  56. Yakov, P., Daniel, R. S., Jean, E. T. M., Jitendra, P., & Robert E. M. (2011). Irrigation waters as a source of pathogenic microorganisms in produce: A Review. In: D. L. Sparks (editor). Advances in Agron., 113, 73-138.
  57. Zandstra, B. H., & De Kryger, T. A. (2007). Arsenic and lead residues in carrots from foliar applications of monosodium methanearosonate (MSMA): A comparison between mineral and organic soils, or from soil residues. Food Addit. Contam., 24, 34-42.
  58. Zhao, T., Clavero, M. R. S., Doyle, M. P., & Beuchat, L. R. (1997). Health relevance of the presence of faecal coliforms in iced tea and in leaf tea. Food Prot., 60, 215-218.

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 Unported License.