Article 6: CARBON STOCKS OF NEEM TREE (Azadirachta indica A. Juss.) IN DIFFERENT URBAN LAND USE AND LAND COVER TYPES IN NIAMEY CITY, NIGER, WEST AFRICA (Vol. 1, Iss. 2, pp. 153-164.)

Soulé Moussa, Boateng Kyereh, Abasse Amadou Tougiani, Mahamane Saadou

CARBON STOCKS OF NEEM TREE (Azadirachta indica A. Juss.) IN DIFFERENT URBAN LAND USE AND LAND COVER TYPES IN NIAMEY CITY, NIGER, WEST AFRICA

           

 Soulé Moussa*1   Boateng Kyereh 2 , Abasse Amadou Tougiani3, Mahamane Saadou4

  1. West African Science Centre on Climate Change and Adapted Land Use (WASCAL) , Department of Civil Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana. Email: smoussa@st.knust.edu.gh Telephone: +22796801125 +233501589424
  2. Department of Silviculture and Forest Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana.
  3. Département de Gestion des Ressources Naturelles, Institut National de la Recherche Agronomique (INRAN) du Niger, Niamey.
  4. Département de Biologie, Faculté des Sciences et Techniques, Université Dan Dicko Dankoulodo Maradi, BP: 465 Maradi, Niger.

 

A R T I C L E  I N F O

Article Type: Research

Received: 27, Oct. 2018.

Accepted: 15, Dec. 2018.

Published: 17, Nov. 2018.

 

 

A B S T R A C T

Urban trees play a crucial role in carbon offset. Nevertheless, much attention has been focused on natural trees role in atmospheric carbon reduction. Specifically, in Niger, the estimation of carbon stock of urban trees remains unexplored areas for climate change mitigation. The objective of the paper was to estimate carbon stock of Azadirachta indica in Niamey. We assessed the structure and carbon stocks of neem trees across urban land use and land cover types using non-destructive method. We measured 853 (DBH ≥ 5 cm) stems within 102 plots over 19.41 ha. The mean and standard error of neem structural characteristics were density 48±9.06 stem/ha, basal area was 5.23±0.93 m2/ha, tree cover was 26.84±4.48%.  Neem trees structural characteristics varied significantly across land use and land cover types (P = 000.1). Big stems (40 > cm) contributed about 72% to the total aboveground biomass. The mean carbon density was 24.17±3.50 t/ha. While the highest carbon stock was observed in commercial areas (67.05±27.49 t/ha), the second lowest carbon stock was in administrative areas (14.04±2.71 t/ha). Neem trees should be accounted for in urban land use planning and national biomass carbon inventory. These results complement the international tree carbon dataset and reference level from Sahel city for climate change mitigation.

Keywords:

Sahel, urban forest, climate change mitigation

References

  1. Akbari, H. (2002). Shade trees reduce building energy use and CO2 emissions from power plants. Environmental Pollution, 116(SUPPL. 1), 119–126. http://doi.org/10.1016/S0269-7491(01)00264-0
  2. Bohre, P., Chaubey, O. P., Pradesh, M., Forest, S., & Jabalpur, M. P. (2016). Biomass Production and Carbon Sequestration by Azadirachta indica in Coal Mined Lands. International Journal of Bio-Science and Bio-Technology, 8(2), 111–120.
  3. Bulkeley, H., & Betsill, M. M. B. (2006). Cities and climate change: Urban sustainability and global environmental governance. Tailor & Francis Group (Vol. 15). New York London: Tailor & Francis Group. http://doi.org/Doi 10.1080/09644010500418845
  4. Cairns, M. A., Helmer, E. H., & Baumgardner, G. A. (1997). Root biomass allocation in the world ’ s upland forests. Oecologie, 1–11.
  5. Chave, J., Mechain, M. R., Burquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. ., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global, 20, 3177–3190. http://doi.org/10.1111/gcb.12629
  6. Chiba, Y. (1998). Architectural analysis of relationship between biomass and basal area based on pipe model theory, 108, 219–225.
  7. Conseil National de l’Environnement pour un Développement Durable. (2016). Troisieme Communication Nationale a la Conference des Parties de la Convention Cadre des Nations Unies sur les Changements Climatiques. Niamey.
  8. D. Agbelade, A., C. Onyekwelu, J., & Apogbona, O. (2016). Assessment of Urban Forest Tree Species Population and Diversity in Ibadan, Nigeria. Environment and Ecology Research, 4(4), 185–192. http://doi.org/10.13189/eer.2016.040401
  9. Davies, Z. G., Edmondson, J. L., Heinemeyer, A., Leake, J. R., & Gaston, K. J. (2011). Mapping an urban ecosystem service: quantifying above-ground carbon storage at a city-wide scale. Journal of Applied Ecology, 48, 1125–1134. http://doi.org/10.1111/j.1365-2664.2011.02021.x
  10. Dayamba, S. D., Djoudi, H., Zida, M., Sawadogo, L., & Verchot, L. (2016). Agriculture , Ecosystems and Environment Biodiversity and carbon stocks in different land use types in the Sudanian Zone of Burkina Faso , West Africa. “Agriculture, Ecosystems and Environment,” 216, 61–72. http://doi.org/10.1016/j.agee.2015.09.023
  11. Golubiewski, N. E. (2015). Urbanization increases grassland carbon pools: effects of landscaping in Colorado’s front range. Ecological Application, 16(2), 555–571.
  12. Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., … Briggs, J. M. (2008). Global Change and the Ecology of Cities Global Change and the Ecology of Cities. Science (New York, N.Y.), 319(5864), 756–760. http://doi.org/10.1126/science.1150195
  13. 1 Henry, M., Bombelli, A., Trotta, C., Alessandrini, A., Birigazzi, L., Sola, G., … Saint-André, L. (2013). GlobAllomeTree: International platform for tree allometric equations to support volume, biomass and carbon assessment. IForest, 6(6), 326–330. http://doi.org/10.3832/ifor0901-006
  14. Hosek, L.-K. (2014). Urban Forestry in Africa – Insights from a Literature Review on the Benefits and Services of Urban Trees. Parallel Session 1a: Global Perspectives, (April), 43–53.
  15. Hutyra, L. R., Byungman, Y., & Marina, A. (2011). Terrestrial carbon stocks across a gradient of urbanization : a study of the Seattle , WA region. Global Change Biology, 17, 783–797. http://doi.org/10.1111/j.1365-2486.2010.02238.x
  16. Illiassou, S. A., Oumani, A. A., Abdou, L., Mahamane, A., & Saadou, M. (2016). Urban Biodiversity: Perception,Preference,General Awareness,and Threats in Two Cities (Niamey and Maradi) of Niger. Urban Studies Research, 2016(November), 12. http://doi.org/10.1155/2016/1469530
  17. INS. (2017). Annuaire Statistique Regional 2012 – 2016. Niamey.
  18. Intergovernmental Panel on Climate Change (IPCC). (2006). 2006 IPCC Guidelines for National Greenhouse Inventories – A primer, Prepared by the National Greenhouse Gas Inventories Programme,. Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Kanagawa.
  19. Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental