Article 4: DISTURBED HAEMATOLOGICAL AND IMMUNOLOGICAL PARAMETERS OF INSECTS BY BOTANICALS AS AN EFFECTIVE APPROACH OF PEST CONTROL: A REVIEW OF RECENT PROGRESS (Vol. 1, Iss. 2; pp. 112-144)

Karem Ghoneim

DISTURBED HAEMATOLOGICAL AND IMMUNOLOGICAL PARAMETERS OF INSECTS BY BOTANICALS AS AN EFFECTIVE APPROACH OF PEST CONTROL: A REVIEW OF RECENT PROGRESS

           

Karem Ghoneim

Professor, Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Cairo, Egypt

Correspondence Email: karemghoneim@gmail.com

 

A R T I C L E  I N F O

Article Type: Research

Received: 02, Nov. 2018.

Accepted: 11, Nov. 2018.

Published: 13, Nov. 2018.

 

 

A B S T R A C T

The indiscriminate and excessive uses of conventional insecticides lead to several drastic problems in the environment, human health and economics. Therefore, it is necessary to seek for safe alternatives among which botanicals represent useful materials for the pest control. The primary objective of the present review was searching for a new control strategy of insect pests via the disruptive effects of botanicals on the haemogram parameters and the immune reactions. In this article, we discussed the effects of plant extracts and plant products on the haemogram parameters including total hemocyte population, differential hemocytes counts, histopathological deformities of hemocytes, haemolymph (blood) volume, mitotic index and heart activity. It focused, secondarily, on the innate immunity (humoral and cellular) in insects and the adverse impacts of botanicals on its mechanisms (phagocytosis, encapsulation, nodulation and melanization). As concluded in the current review, botanicals suppress the immune capability, leading to the insects become susceptible to the effects of microbes and ultimately results in the death. This can be appreciated as a new strategy for an effective control of insect pests. However, some points of future research had been provided.  Also, some fieldwork should be conducted to realize the botanical impacts on haematological and immunological criteria for the pest control.

 

Keywords:

haemogram, heartbeat, hemocyte, histopathology, immunity, phagocytosis, capsulation, mitosis, nodulation..

References

  1. Abhilash, P.C. & Singh, N. (2009). Pesticide use and application: An Indian scenario. Journal of Hazardous Materials, 165(1):1-12. DOI: 10.1016/j.jhazmat. 2008. 10.061
  2. Adline, J.D., Gunasekaran, J.C. & Lingathurai, S. (2015). Toxic effect of Glinus lotoides (Aizoaceae) on rice-moth, Corcyra cephalonica Staintion (Lepidoptera: Pyralidae) eggs. Int. J. Curr. Res. Biosci. Plant Biol., 2(2), 35-42.
  3. Ajamhassani, M., Sendi, J.J., Zibaee, A., Askary, H. & Farsi, M.J. (2013). Immunoliogical responses of Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) to entomopathogenic fungi, Beauveria bassiana (Bals.-Criy) and Isaria farinosae (Holmsk.). Journal of Plant Protection Research, 53(2), 110-118. DOI: https:// doi.org/10.2478/jppr-2013-0016
  4. Al-Ghamdi, M.S. (2001). The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. J. Ethnopharmacol., 76(1), 45-48. https://doi.org/10.1016/S0378-8741(01)00216-1
  5. Ali, B.H. & Blunden, G. (2003). Pharmacological and toxicological properties of Nigella sativa. Phytother. Res., 17(4), 299-305. https://doi.org/10.1002/ptr.1309
  6. Ali, M.A., Sayeed, M.A., Alam, M.S., Yeasmin, M.S., Khan, A.M. & Muhamad, I.I. (2012). Characteristics of oils and nutrient contents of Nigella sativa and Trigonella foenum-graecum seeds. Bull. Chem. Soc. Ethiop., 26, 55–64.
  7. Altuntaş, H., Kiliç, A.Y., Uçkan, F. & Ergin, E. (2012). Effects of gibberellic acid on hemocytes of Galleria mellonella (Lepidoptera: Pyralidae). Environmental Entomology, 41(3), 688-696. https://doi.org/10.1603/EN11307
  8. Anderson, R.S., Burreson, E.M. & Paynter, K.T. (1995). Defense responses of haemocytes withdrawn from Crassostrea virginica infected with Perkinsus marinus. J. Invertebr. Pathol., 66, 82-89. https://doi.org/10.1006/jipa.1995.1065
  9. Annuradha, I.R.S. & Rembold, H. (1993). Azadirachtin A modulates the tissue specific 2D polypeptide pattern of the desert locust, Schistocerca gregaria. Naturwissenschaften, 80, 127–130.
  10. Annuradha, A. & Anuadurai, R.S. (2008). Biochemical and molecular evidence of azadirachtin binding to insect actins. Current Sci., 95(11), 1588-1593. https://www.jstor.org/stable/ 24105517
  11. Arnold, J.W. (1972). A comparative study of the haemocytes (blood cells) of cockroaches (Insecta, Dictyoptera, Blattari), with a view of their significance in taxonomy. Can. Entomol., 104, 309-348. DOI: 10.4039/Ent104309-3
  12. Ashida, M. & Brey, P.T. (1995). Role of the integument in insect defense: prophenoloxidase cascade in the cuticular matrix. Proc. Natl. Acad. Sci. U S A, 92, 10698–10702. https:// doi.org/ 10.1073/ pnas. 92. 23.10698
  13. Asiri, B.M.K. (2017). Bioinsecticides induce change in biochemical and immunological parameters of Spodoptera littoralis Chemical and Biomolecular Engineering, 2(2), 106-112. doi: 10.11648/ j.cbe. 20170202.15
  14. Ayaad, T.H., Dorrah, M.A., Shaurub, E.H. & El-Sadawy, H.A. (2001). Effects of the entomopathogenic nematode, Heterohabditis bacteriophora HP88 and azadirachtin on the immune defense response and prophenoloxidase of Parasarcophaga surcoufi larvae (Diptera: Sarcophagidae). J. Egypt. Soc. Parasitol., 31(1), 295-325.
  15. Aydin, H. & Gurkan, M.O. (2006). The efficacy of spinosad on different strains of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Turk. J. Biol., 30, 5-9.
  16. Azambuja, P.D. & Garcia, E.S. (1992). Effects of azadirachtin on Rhodnius prolixus: immunity and Trypanosoma Mem. Inst. Oswaldo Cruz Rio de Janeiro, 87 (Suppl. 5), 69–72.
  17. Azambuja, P.D., Garcia, E.S., Ratcliffe, N.A. & Warthen, J.D. (1991). Immune-depression in Rhodnius prolixus induced by the growth inhibitor azadirachtin. Insect Physiol., 37, 771–777. https://doi.org/ 10.1016/0022-1910(91)90112-D
  18. Bardoloi, S., Desdimona, K. & Mazid, S. (2016). Comparative study of the changes in haemogram of Antheraea assama Ww reared on two host plants, Som (Machilus bombycina King) and Soalu (Litsea polyantha Juss). International Journal of Pure and Applied Bioscience, 4(5), 144-152. DOI: 10.18782/2320-7051.2368
  19. Barnby M.A. & J.A. Klocke, (1990). Effects of azadirachtin on levels of ecdysteroids and prothoracicotropic hormone-like activity in Heliothis virescens (Fabr) larvae. J. Insect Physiol., 36, 125-131. doi:10.1016/0022-1910(90)90183-G
  20. Beaulaton, J. (1979). Haemocytes and haemocytopoiesis in silkworms. Biochimie., 61, 157- 164.
  21. Ben Hamouda, A., Mechi, A., Zarrad Kh., Laarif A. & Chaieb, I. (2015). Disruptive effects of pomegranate Punica granatum (Lythraceae) extracts on the feeding, digestion and morphology of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Entomology and Applied Science Letters, 2(2), 1-6.
  22. Berger, J. & Jurčová, M. (2012). Phagocytosis of insect haemocytes as a new alternative model. J. App. Biomed., 10, 35-40. https://doi.org/ 10.2478/v10136-012-0003-1
  23. Blanco, L.A.A. (2016). Differential cellular immune response of hemocyte of Galleria mellonella larvae against Actinobacillus pleuropneumoniae M.Sc. Thesis, Universidade Federal de Viçosa, Brazil.
  24. Bogdan, C., Röllinghoff, M. & Diefenbach, A. (2000). Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol., 12. 64–76. https:// doi.org/10.1016/S0952-7915 (99) 00052-7
  25. Bokaeian, M., Saboori, E., Saeidi, S., Niazi, A.A., Amini-Borojeni, N., Khaje, H. & Bazi, S. (2013). Phytochemical Analysis, Antibacterial Activity of Marrubium vulgare against Staphylococcus aureus in vitro. Zahedan Journal of Research in Medical Sciences, 16(10), 60-64.
  26. Brehelin, M. & Hoffman, J.A. (1980). Phagocytosis of inert particles in Locusta migratoria and Galleria mellonella: study of ultrastructure and clearance. J. Insect Physiol., 26, 103-111. doi:10.1016/0022-1910 (80)90049-9
  27. Brown, A.E., Baumbach, J., Cook, P.E. & Ligoxygakis, P. (2009). Short-term starvation of immune deficient Drosophila improves survival to gram-negative bacterial infections. PLoSONE, 4: e4490. https://doi.org/10.1371/ pone.0004490
  28. Browne, N., Heelan, M. & Kavanagh, K. (2013). An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence, 4, 597–603. http://dx.doi. org/10. 4161/viru.25906
  29. Butt, T.M. & Shields, K.S. (1996). The structure and behaviour of Gypsy moth (Lymantria dispar) hemocytes. Journal of Invertebrate Pathology, 68, 1-14. https://doi.org/10.1006/1996.0052
  30. Castillo, J.C., Robertson, A.E. & Strand, M.R. (2006). Characterization of hemocytes from the mosquitoes Anophles gambiase and Aedes aegypti. Insect Biochem. Mol. Biol., 36, 891-903.
  31. Castillo, J.C., Reynolds, S.E. & Eleftherianos, I. (2011). Insect immune responses to nematode parasites. Trends in Parasitology, 27, 537-547. https: //doi.org/10.1016/ j.pt.2011.09.001
  32. Catalan, T.P., Wozniak, A., Niemeyer, H.M., Kalergis, A.M. & Bozinovic, F. (2012). Interplay between thermal and immune ecology: effect of environmental temperature on insect immune response and energetic costs after an immune challenge. Journal of Insect Physiology, 58, 310-317. https://doi.org/10. 1016/ j.jinsphys. 2011. 10.001
  33. Çelik, D., Özbek, R. & Uckan, F. (2017). Effects of indole-3-acetic acid on hemocytes of Achoria grisella (Lepidoptera: Pyralidae). J. Entomol. Res. Soc., 19(2), 83-93.
  34. Cerenius, L. & Soderhall, K. (2004). The prophenoloxidase-activating system in invertebrates. Immunol. Rev., 198, 116–126. https://doi.org/1111/j.0105-2896.2004.00116.x
  35. Chapman, R.F. (1982). The Insect Structure and Function. E.L.B.S. Edition, pp: 92-94.
  36. Chennaiyan, V., Sivakami, R. & Jeyasankar, A. (2016a). Effect of Duranta erecta Linn (Verbenaceae) leaf extracts against armyworm Spodoptera litura and cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae). Int. J.Adv. Res. Biol. Sci., 3(2), 311-320.
  37. Chennaiyan, V., Sivakami, R. & Jeyasankar, A. (2016b). Evaluating ecofriendly botanicals of Barleria longiflora F. (Acanthaceae) against armyworm Spodoptera litura Fab. and cotton bollworm Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Annu. Res. Rev. Biol., 10(3), 1-9.
  38. Chu, F.L.E., La-Peyre, J.F. & Burreson, C.S. (1993). Perkinsus marinus infection and potential defense-related activities in Eastern oysters, Crassostrea virginica: Salinity effect. J. Invertebr. Pathol., 62, 226- 232. https://doi.org/10.1006/ 1993.1104
  39. Clem, R.J. (2005). The role of apoptosis in defense against baculovirus infection in insects. Current Topics in Microbiology and Immunology, 289, 113-129. https://doi.org/10. 1007/3-540-27320-4_5
  40. Clemente, S., Mareggiani, G., Broussalis, A., Martino, V. & Ferraro, G. (2003). Insecticidal effects of Lamiaceae species against stored products insects. Boletín de Sanidad Vegetal. Plagas, 29, 1-8.
  41. Costa, S.C.P., Ribeiro, C., Girard, P.A., Zumbihl, R. & Brehelin, M. (2005). Modes of phagocytosis of Gram-positive and Gram-negative bacteria by Spodoptera littoralis granular haemocytes. Journal of Insect Physiology, 51, 39-46. https://doi.org/1016/j.jinsphys. 2004. 10.014
  42. Costa, L.G., Giordano, G., Guizzetti, M. & Vitalone, A. (2008). Neurotoxicity of pesticides: a brief review. Frontiers BioSci., 13, 1240-1249. DOI: 10.2741/2758
  43. Cytrynska, M., Mak, P., Zdybicka-Barabas, A., Suder, P. & Jakubowicz, T. (2007). Purification and characterization of eight peptides from Gellaria mellonella immune hemolymph. Peptides, 28, 533–546. https://doi.org/10.1016/j .peptides. 2006.11.010
  44. Davies, T.G.E., Field, L.M., Usherwood, P.N.R. & Williamson, M.S. (2007). DDT, pyrethrins and insect sodium channels. IUBMB Life, 59, 151-162. DOI: 10.1080/ 15216540701352042
  45. Dayan, F.E., Cantrell, C.L. & Duke, S.O. (2009). Natural products in crop protection. Bioorg. Med. Chem., 17(12), 4022-4034. https://doi.org/10.1016/j.bmc. 2009. 01.046
  46. Derbalah, A.S., Khidr, A.A., Moustafa, H.Z. & Taman, A. (2014). Laboratory evaluation of some non-conventional pest control agents against the pink bollworm Pectinophora gossypiella (Saunders). Egyptian Journal of Biological Pest Control, 24(2), 363-368. http://www.esbcp.org/index.asp
  47. Dubey, N.K., Shukla, R., Kumar, A., Singh, P. & Prakash, B. (2010). Prospects of botanical pesticides in sustainable agriculture. Curr. Sci., 98(4), 479-480.
  48. Dubey N.K., Shukla R., Kumar A., Singh P. & Prakash B. (2011). Global scenario on the application of natural products in integrated pest management programmes. In: “Natural Products in Plant Pest Management”(Dubey, N.K., ed.), chapter1, pp: 1-20.
  49. El-Sheikh, T.A.A. (2002). Effects of application of selected insect growth regulators and plant extracts on some physiological aspects of the black cutworm, Agrotis ipsilon (HUF.). Ph.D. Thesis, Faculty of Science, Ain Shams University, Egypt.
  50. Er, A. & Keskin, M. (2016). Influence of abscisic acid on the biology and hemocytes of the model insect Galleria mellonella (Lepidoptera: Pyralidae). Annals of the Entomological Society of America, 109(2), 244-251. https://doi.org/10.1093/ aesa/sav122
  51. Er, A., Uçkan, F., Rivers, D.B., Ergin, E. & Sak, O. (2010). Effects of parasitization and envenomation by the endoparasitic wasp Pimpla turionellae (Hymenoptera: Ichneumonidae) on hemocyte numbers, morphology, and viability of its host Galleria mellonella (Lepidoptera: Pyralidae). Annals of the Entomological Society of America, 103, 273-82. https://doi.org/10.1603/AN09065
  52. Essawy, M., Maleville, A. & Brehelin, M. (1985). The haemocytes of Heliothis armigera: ultrastructure, cytochemistry and functions. Journal of Morphology, 186, 255–264. https://doi.org/1002/ jmor. 1051860302
  53. Fallatah, S.A. & Khater, E.I. (2010). Potential medicinal plants in mosquito   J. Egypt.  Soc.  Parasitol., 40, 1–26.
  54. Farag, N.A. (2002). Effect of Haphyllum tuberculatum extracts on an insect on an insect pest Spodoptera littoralis and the predator, Coccinella undecimpunctata. Ann. Agric. Sci. Cairo., 47, 1097-1105.
  55. Gad, A.A. & El-DaKheel, A.A. (2009). Larvicidal activities of Cinnamomum osmophloeum and Matricharia chamomella extracts against the filarial mosquito Culex quinquefasciatus (Diptera: Culicidae) and their effects on its haemogram. The Egyptian Science Magazine, 6(1/2), 8-15.
  56. George, P.J.E. (1996). Impact of chosen insecticides on three non-target reduviid biocontrol agents (Insecta: Heteroptera: Reduviilidae). Ph.D. Thesis, Triunelveli: Manonmaniam Sundaranar University, Tamil Nadu, India. 117pp.
  57. George, P.J.E. & Ambrose, D.P. (2004). Impact of insecticides on the haemogram of Rhynocoris kumarii Ambrose & Livingstone (Hem. Reduviidae). J. App.Entomol., 128(9-10), 600-604. https://doi.org/10.1111/j.1439-0418.2004. 00896.x
  58. Ghasemi, V., Moharramipour, S. & Sendi, J.J. (2013a). Circulating hemocytes of Mediterranean flour moth, Ephestia kuehniella (Lep: Pyralidae) and their response to thermal stress. Invertebrate Survival Journal, 10, 128-140.
  59. Ghasemi, V., Yazdib, A.K., Tavallaie, F.Z. & Sendi, J.J. (2013b). Effect of essential oils from Callistemon viminalis and Ferula gummosa on toxicity and on the hemocyte profile of Ephestia kuehniella (Lep.: Pyralidae). Archives of Phytopathology and Plant Protection, 47(3), 268-278. https://doi.org/10.1080/2013.808856
  60. Ghoneim, K., Hamadah, Kh., El-Hela, A., Mohammad, A. & Amer, M. (2015a). Efficacy of Nigella sativa (Ranunculaceae) extracts on adult performance and phase transition of the desert locust Schistocerca gregaria (Orthoptera: Acrididae). International Journal of Research Studies in Zoology, 1(2), 29-44.
  61. Ghoneim, K., Hamadah, Kh., El-Hela, A. & Amer, M. (2015b). Inhibitory effects of Nigella sativa (Ranunculaceae) extracts on the reproduction of desert locust Schistocerca gregaria (Orthoptera: Acrididae). International Journal of Research Studies in Zoology, 1(1), 43-55.
  62. Ghoneim, K., Tanani, M., Hamadah, Kh., Basiouny, A. & Waheeb, H. (2015c). Effects of Novaluron and Cyromazine, chitin synthesis inhibitors, on the larval haemogram of Spodoptera littoralis (Boisd.)(Lepidoptera: Noctuidae). International Journal of Advanced Research, 3(1), 554 -576.
  63. Ghoneim, K., Hamadah, Kh., Amer, M., El-Hela, A. & Mohammad, A. (2015d). Qualitative and quantitative changes in the haemogram of desert locust Schistocerca gregaria (Orthoptera: Acrididae) by extracts of Nigella sativa (Ranunculaceae). Journal of Advances in Biology, 7(2), 1275-1292.
  64. Ghoneim, K. (2018). Characterization of qualitative and quantitative haemogram parameters in insects: a review of current concepts and future prospects. Journal of Biotechnology Research (In press).
  65. Gillespie, J.P., Kanost, M.R. & Trenczek, T. (1997). Biological mediators of insect immunity. Annu. Rev. Entomol., 42, 611-643. DOI:10.1146/annurev.ento. 42.1.611
  66. Giulianini, P.G., Bertolo, F., Battistella, S. & Amirante, G.A. (2003). Ultrastructure of the hemocytes of Cetonischema aeruginosa larvae (Coleoptera, Scarabaeidae): involvement of both granulocytes and oenocytoids in in vivo Tissue Cell, 35, 243-251. https:// doi. org/10.1016/S0040-8166(03)00037-5
  67. Gorman, M.J., An, C. & Kanost, M.R. (2007). Characterization of tyrosine hydroxylase from Manduca sexta. Insect Biochem. Mol. Biol., 37, 1327-1337. DOI: 10.1016/j.ibmb.2007.08.006
  68. Götz, P. & Boman, H.G. (1985). Insect immunity. In: “Comprehensive insect physiology, biochemistry and pharmacology”(Kerkut GA, Gilbert LI, Editors). pp. 453-487. Pergamon Press.
  69. Gupta, A.P. (1979). Insect hemocytes: development, forms, functions, and techniques. Cambridge University Press., New York, 614 pp.
  70. Gupta, A.P. (1985). Cellular Elements in the Hemolymph. In: “Comprehensive Insect Physiology Biochemistry Pharmacology” (Kerkut, G.A. & Gilbert, L.I., eds.). Pergamon Press, New York, pp: 400-451.
  71. Gupta, A.P. & Sutherland, D.J. (1966). In vitro transformations of the insect plasmatocyte in some insects. J. Insect Physiol., 12, 1369-1375. https://doi.org/1016/0022-1910(66)90151-X
  72. Halawa, S., Gaaboub, I., Gad, A.A. & El-Aswad, A.F. (2007). Effect of some insecticides on the haemolymph of desert locust Schistocerca gregaria J. Egypt. Soc. Toxicology, 36, 61-66.
  73. Hamadah, Kh.Sh., Ghoneim, K.S., El-Hela, A.A., Amer, S.M. & Mohammad, A.A.1. (2013). Disturbed survival, growth and development of the desert locust Schistocerca gregaria by different extracts of Azadirachta indica (Meliaceae) and Nigella sativa (Ranunculaceae). Egypt. Acad. J. Biolog. Sci., 6(2), 01 -21.
  74. Hassan, H.A., Bakr, R.F.A., Abd El-Bar, M.M., Nawar, G.A. & Elbanna, H.M. (2013). Changes of cotton leaf worm haemocytes and esterases after exposure to compounds derived from urea and rice straw. Egypt.Acad.J. Biolog., 5(2), 35-48.
  75. Haszcz, K. (2016). Impairing the insect immune system with plant-derived substances. M.Sc. Thesis, the Graduate College of Missouri State University, 43pp. http://bearworks. edu/theses/ 2383
  76. Hegedus, D., Erlandson, M., Gillott, C. & Toprak, U. (2009). New insights into peritrophic matrix synthesis, architecture, and function. Annu. Rev. Entomol., 54, 285–302. DOI: 10.1146/annurev. ento. 54.110807. 090559
  77. Hillyer, J.F. (2016). Insect immunology and hematopoiesis. Dev. Comp. Immunol., 58,102-118. https://doi.org/10.1016/j.dci.2015.12.006
  78. Hillyer, J.F. & Strand, M.R. (2014). Mosquito hemocyte-mediated immune responses. Current Opinion in Insect Science, 3:14-21. DOI: 10.1016/j.cois.2014.07.002
  79. Huang, J.F., Shui, K.J., Li, H.Y., Hu, M.Y. & Zhong, G.H. (2011). Antiproliferative effect of azadirachtin A on Spodoptera litura Sl-1 cell line through cell cycle arrest and apoptosis induced by up-regulation of p53. Pestic Biochem Phys., 99, 16-24.
  80. Huron, E.N., Abbas, A.A., Abd El-Hamid, N.A., Nada, M.S. & Amin, T.R. (2016). Toxicity and acute macromolecular abnormalities induced by some plant extracts against the Cowpea aphid, Aphis carricivora J. Plant Prot. and Path., Mansoura Univ. (Egypt), 7(7), 445-449.
  81. Hussain, A. (2012). The effect of non-host plant volatiles on the reproductive behaviour of the Egyptian cotton leafworm, Spodoptera littoralis. M.Sc. Thesis, Swedish Univ. Agric.Sci., 40pp.
  82. Hwang, S., Bang, K., Lee, J. & Cho, S. (2015). Circulating hemocytes from larvae of the Japanese rhinoceros beetle Allomyrina dichotoma (Linnaeus)(Coleoptera: Scarabaeidae) and the cellular immune response to microorganisms. PLoS ONE 10(6), e0128519. doi:10.1371/ journal.pone.0128519
  83. Imler, J.L. & Bulet, P. (2005). Antimicrobial peptides in Drosophila, structures, activities and gene regulation. Chemical Immunology and Allergy, 86, 1-21. DOI: 10.1159/000086648
  84. Irving, P., Ubeda, J., Doucet, D., Troxler, L., Lagueux, M., Zachary, D., Hoffmann, J., Hetru, C. & Meister, M. (2005). New insights into Drosophila larval haemocyte functions through genome wide analysis. Cellular Microbiology, 7(3), 335-350. https://doi.org/10.1111/1462-5822.2004.00462.x
  85. İzzetoğlu, S. & Karaçali, S. (2010). A novel site for hematopoietic organ in Bombyx mori (Lepidoptera: Bombycidae). The Journal of Faculty of Veterinary Medicine, Kafkas University, Turkey, 16 (Suppl-B), 243-247.
  86. James, R.R. & Xu, J. (2012). Mechanisms by which pesticides affect insect immunity. Journal of Invertebrate Pathology, 109(2), 175-182. https://doi.org/10.1016/ jip.2011.12.005
  87. Jeyasankar, A. & Jesudasan, R.W.A. (2005). Insecticidal properties of novel botanicals against a few lepidopteran pests. Pestology, 29, 42-44.
  88. Jiang, H., Vilcinskas, A. & Kanost, M.R. (2010). Immunity in lepidopteran insects. Adv. Exp. Med. Biol., 708, 181-204. https://doi.org/10.1007/978-1-4419-8059-5_10
  89. John, P.A. & Ananthakrishnan, T.N. (1995). Impact of azadirachtin on the haemodynamics of Cyrtacanthacris tatarica (Acrididae: Orthoptera). Journal of Entomological Research, 19(4), 285-290. http://oar.icrisat.org/id/eprint/6879
  90. Jones, J.C. (1959). A phase contrast study of the blood cells in Prodenia larvae (Order Lepidoptera). Quart. J. Micr. Sci., 100, 17-23.
  91. Jones, J.C. (1962). Current concepts concerning insect haemocytes. Integrative and Comparative Biology, 2(2), 209-246. https://doi. org/ 10. 1093/icb/2.2.209
  92. Jones, J.C. (1967). Normal differential count of haemocytes in relation to ecdysis and feeding in Rhodnius prolixus. J. Insect Physiol., 13, 1133-1143. https://doi. org/10.1016/0022-1910(67)90087-X
  93. Jones, J.C. & Tauber, O.E. (1954). Abnormal haemocytes in mealworm (Tenebrio molitor). Ann. Entomol. Soc. Amer., 47(3), 428-444. https://doi.org/10. 1093/aesa/47.3.428
  94. Jones, J.C. & Liu, D.P. (1961). Total and differential haemocyte counts of Rhodnius prolixus Bulletin of Society for Science and Technology, India, 7, 166.
  95. Kaidi, N., Amroun, C., Hocine, D., Doumandji, S. & Ghezali, D. (2017). Biological activity of Calotropis procera Ait on mortality and haemogram of Schistocerca gregaria (Forskal, 1775) and Locusta migratoria (Linné, 1758). Advances in Environmental Biology, 11(4), 37-45.
  96. Kalyani, S.S. & Holihosur, R.S.N. (2015). Toxic effect of crude aqueous leaf extracts of Clerodendron inerme, on the total haemocyte count of sixth instar larva of Helicoverpa armigera (H). International Journal for Innovative Research in Science & Technology, 1(12), 221-224.
  97. Kanost, M.R. & Gorman, M.J. (2008). Phenoloxidases in insect immunity. In: “Insect immunology”. Pp: 69-96. Academic Press/Elsevier, San Diego.
  98. Khanikor, B. & Bora, D. (2012). Effect of plant-based essential oil on immune response of silkworm, Antheraea assama Westwood (Lepidoptera: Saturniidae). International Journal of Industrial Entomology, 25(2), 139-146. DOI:10.7852/ ijie.2012.25.2.139
  99. Khosravi, R., Sendi, J.J., Brayner, F.A., Alves, L.C. & Feitosa, A.P.S. (2016). Hemocytes of the rose sawfly Arge ochropus (Gmelin) (Hymenoptera: Argidae). Neotropical Entomology, 45(1), 11pp. DOI: 10.1007/s13744-015-0339-9
  100. Kim, E.J., Rhee, W.J. & Park, T.H. (2001). Isolation and characterization of an apoptosis-inhibiting component from the hemolymph of Bombyx mori. Biochemical and Biophysical Research Communications, 285(2), 224-228. https://doi.org/10.1006/bbrc.2001.5148
  101. Kohan, R. & Sendi, J.J. (2013). Immune responses of elm leaf beetle Xanthogaleruca luteola (Col: Chrysomellidae) to Beaveria bassiana and Artemisia annua essential oil. SOAJ Entomol. Studi, 2, 16-25.
  102. Kohlmaier, A. & Edgar, B.A. (2008). Proliferative control in Drosophila stem cells. Curr. Opin. Cell Biol., 20, 699-706. https://doi.org/10.1016/j.ceb.2008.10.002
  103. Koodalingam, A., Mullainadhan, P. & Arumugam, M. (2009). Antimosquito activity  of aqueous  kernel  extract  of  soapnut  Sapindus  emarginatus:  impact  on  various developmental  stages  of  three  vector  mosquito  species  and  non-target  aquatic insects.  Parasitology  , 105, 1425-1434. https://doi.org/10. 1007/s00436-009-1574-y
  104. Koodalingam, A., Mullainadhan, &  Arumugam,  M. (2011). Effects  of  extract  of  soapnut Sapindus  emarginatus  on  esterases  and  phosphatases  of  the  vector  mosquito, Aedes  aegypti  (Diptera:  Culicidae).  Acta Tropica, 118, 27-36. https://doi.org/ 10.1016/ j.actatropica. 2011.01.003
  105. Koodalingam, A., Mullainadhan, P. & Arumugam, M. (2013). Immuno-suppressive effects of aqueous extract of  soapnut  Sapindus emarginatus on  the  larvae  and  pupae  of  vector  mosquito,  Aedes  aegypti. Acta Tropica, 126, 249-255. https://doi.org/1016/j.actatropica. 2013.02.021
  106. Koodalingam, A., Deepalakshmi, R., Ammu, M. & Rajalakshmi, A. (2014). Effects of NeemAzal on marker enzymes and hemocyte phagocytic activity of larvae and pupae of the vector mosquito Aedes aegypti. Journal of Asia-Pacific Entomology, 17(2), 175-181. https://doi.org/10.1016/j.aspen.2013.12.007
  107. Koul, O. (2004). Biological activity of volatile D-n-Propyl Difulside from seeds of neem, Azadirachta indica (Meliaceae), to two species of stored grain pests, Sitophilus oryzae (L.) and Tribolium oryzae (Herbst). Journal of Economic Entomology, 97, 1142-1147. https://doi. org/10.1093/jee/97.3.1142
  108. Krams, I., Kecko, S., Kangassalo, K., Moore, F.R., Jankevics, E., Inashkina, I., Krama, T., Lietuvietis, V., Meija, L. & Rantala, M.J. (2014). Effects of food quality on trade-offs among growth, immunity and survival in the greater wax moth Galleria mellonella. Insect Science, 22, 431–439. https://doi.org/ 1111/1744-7917.12132
  109. Kurihara, Y., Shimazu, T. & Wago, H. (1992). Classification of hemocytes in the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae): I. Phase microscopic study. Applied Entomology and Zoology, 27(2), 225-235. DOI: 10.1303/aez.27.225
  110. Kurt, D. & Kayis, T. (2015). Effects of the pyrethroid insecticide deltamethrin on the hemocytes of Galleria mellonella. Turkish Journal of Zoology, 39, 452-457.
  111. Kurtz J. (2002). Phagocitosis by invertebrate hemocytes: causes of individual variation in Panorpia vulgaris scorpion flies. Micros. Res. Tech., 57(6), 456-68. doi: http://doi.org/dcws99.
  112. Kwon, H., Bang, K. & Cho, S. (2014). Characterization of the hemocytes in larvae of Protaetia brevitarsis seulensis: involvement of granulocyte-mediated phagocytosis. PLoS ONE 9(8), e103620. doi:10.1371/journal.pone.0103620
  113. Lampert, E. (2012): Influences of plant traits on immune responses of specialist and generalist herbivores. Insects, 3: 573-592. Doi: 10.3390/insects3020573
  114. Levin, D.M., Breuer, L.N., Zhuang, S., Anderson, S.A., Nardi, J.B. & Kanost, M.R. (2005). A Hemocyte-specific integrin required for hemocytic encapsulation in the tobacco hornworm, Manduca sexta. Insect Biochemistry and Molecular Biology, 35 (5), 369-380. https://doi.org/10.1016/j.ibmb.2005.01.003
  115. Ling, E. & Yu, X.Q. (2006). Hemocytes from the tobacco hornworm Manduca sexta have distinct functions in phagocytosis of foreign particles and self dead cells. Develop. Comp. Immunol., 30, 301- 309.
  116. Liu, F., Huang, W., Wu, K., Qiu, Z., Huang, Y. & Ling, E. (2017). Chapter Seven – Exploiting Innate Immunity for Biological Pest Control. Advances in Insect Physiology, 52, 199-230. https://doi.org/10.1016/bs.aiip.2017.02.001
  117. Lokesh, K.V., Kanmani, S., Adline, J.D., Raveen, R., Samuel, T., Arivoli, S. & Jayakumar, M. (2017). Adulticidal activity of Nicotiana tabacum Linnaeus (Solanaceae) leaf extracts against the sweet potato weevil Cylas formicarius Fabricius 1798 (Coleoptera: Brentidae). Journal of Entomology and Zoology Studies, 5(5), 518-524.
  118. Lowenberger, C. (2001). Innate immune response of Aedes aegypti. Insect Biochem. Mol. Biol., 31, 219-229. https://doi.org/10.1016/s0965-1748(00)00141-7
  119. Manogem, E.M., Arathi, S. & Shony, U. (2015). A study on the haemocytes profile of Spodoptera mauritia (Lepidoptera: Noctuidae). Int. J. Pure App. Biosci., 3(5), 113-120. DOI: http:// dx. doi. org/10.18782/2320-7051.2109
  120. Marciniak, P., Adamski, Z., Bednarz, P., Slocinska, M., Ziemnicki, K., Lelario, F., Scrano, L. & Bufo, S.A. (2010). Cardioinhibitory properties of potato glycoalkaloids in beetles. Bull. Environ. Contam. Toxicol., 84(2), 153-156. https://doi.org/10.1007/s00128-009-9921-3
  121. Marmaras, V.J. & Lampropoulou, M. (2009), Regulators and signalling in insect haemocyte immunity. Cell Signal, 21, 186-195. https://doi.org/10.1016/j. cellsig.2008.08.014
  122. Meister, M., Hetru, C. & Hoffmann, J.A. (2000). The antimicrobial host defense of Drosophila. In: “Current Topics in Microbiology and Immunology-Origin and Evolution of the Vertebrate Immune System”(Du Pasquier, L. and Litman, G.W., eds.). vol. 248, 17-36. Springer-Verlag, Berlin.
  123. Miles, M. & Lysandrou, M. (2002). Evidence for negative cross resistance to insecticides in field collected Spodoptera littoralis (Boisd.) from Lebanon inlaboratory bioassays. Mededelingen (Rijksuniversiteitte Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen), 67, 665.
  124. Morya, K., Pillai, S. & Patel, P. (2010). Effect of powdered leaves of Lantana camara, Clerodendrum inerme and Citrus limon on the rice moth, Corcyra cephalonica. Bulletin of Insectology, 63(2), 183-189.
  125. Mosallanejad, H. & Smagghe, G. (2009). Biochemical mechanisms of methoxyfenozide resistance in the cotton leafworm Spodoptera littoralis. Pest Manage. Sci., 65, 732-736. DOI: 10.1002/ps.1753
  126. Mullen, L. & Goldsworthy, G. (2003). Changes in lipophorins are related to the activation of phenoloxidase in the haemolymph of Locusta migratoria in response to injection of immunogens. Insect Biochem. Mol. Biol., 33, 661-670. https://doi.org/10.1016/S0965-1748(03)00045-6
  127. Muta, T. & Iwanaga, S. (1996). The role of hemolympyh coagulation in innate immunity. Curr. Opin. Immunol., 8, 41-47. https://doi.org/1016/S0952-7915(96)80103-8
  128. Nappi, J.A. (1974). Insect haemocytes and the problem of host recognition of foreigners. In: “Contemporary Topics in Immuonology-Invertebrate immunity”(Cooper, E.L., ed.), IV, 207-224. Plenum Press, New York and London.
  129. Nardi, J.B. (2004). Embryonic origins of the two main classes of hemocytes granular cells and plasmatocytes in Manduca sexta. Development, Genes and Evolution, 214(1), 19-28. https://doi.org/10. 1007/s00427-003-0371-3
  130. Nardi, J.B., Gao, C. & Kanost, M.R. (2001). The extracellular matrix protein lacunin is expressed by a subset of hemocytes involved in basal lamina morphogenesis. Journal of Insect Physiology, 47, 997-1006. https://doi.org/10.1016/S0022-1910(01)00074-9
  131. Nardi, J.B., Pilas, B., Ujhelyi, E., Garsha, K. & Kanost, M.R. (2003). Hematopoietic organs of Manduca sexta and hemocyte lineages. Development Genes and Evolution, 213(10), 477-491. https://doi.org/ 10.1007/s00427-003-0352-6
  132. Niroula, S.P. & Vaidya, K. (2004). Efficacy of some botanicals against Potato tuber moth, Phthorimaea operculella (Zeller, 1873). Our Nature, 2, 21-25. doi:10.3126/on.v2i1.320
  133. Ntalli, N., Kopiczko, A., Radtke, K., Marciniak, P., Rosinski, G. & Adamski, Z. (2014). Biological activity of Melia azedarach extracts against Spodoptera exigua. Biologia, 69(11), 1606-1614. https://doi.org/10.2478/s11756-014-0454-9
  134. Okazaki, T., Okudaira, N., Iwabuchi, K., Fugo, H. & Nagai, T. (2006). Apoptosis and adhesion of hemocytes during molting stage of silkworm, Bombyx mori. Zool. Sci., 23, 299-304. https://doi.org/10. 2108/zsj.23.299
  135. Ordas, M.C., Ordas, A., Belosa, C. & Figueras, A. (2000). Immune parameters in carpet shell clams naturally infected with Perkinsus atlanticus. Fish Shellfish Immunol., 10(7), 597-609. https://doi. org/10.1006/fsim.2000.0274
  136. Orser, W.B. & Brown, A.W.A. (1951). The effect of insecticides on the heartbeat of Periplaneta. Canadian Journal of Zoology, 29(1), 54-64. DOI: 10.1139/z51-005
  137. Padmaja, P.G. & Rao, P.J. (2000). Effect of plant oils on the total haemocyte count (THC) of final instar larvae of Helicoverpa armigera Hübner. Pesticide Research Journal, 12(1), 112-116.
  138. Pandey, J.P. (2004). Studies on stress induced haematological changes in Dysdercus cingulatus (Heteroptera: Pyrrhocoridae) and Danais chryssipus (Lepidoptera: Nymphalidae). Ph.D.Thesis, V.B.S. Purvanchal University, Jaunpur, India.
  139. Pandey, J.P. & Tiwari, R.K. (2011). Neem based insecticides interaction with development and fecundity of red cotton bug, Dysdercus cingulatus International Journal of Agricultural Research, 6(4), 335-346. DOI:10.3923/ ijar.2011.335.346
  140. Pandey, J.P., Upadhyay, A.K. & Tiwari, R.K. (2007). Effect of some plant extracts on haemocyte count and moulting of Danais chrysippus J. Adv. Zool., 28, 14-20. DOI: 10.3923/je.2012.23.31
  141. Pandey, J.P., Tiwari, R.K. & Kumar, D. (2008). Reduction in hemocyte mediated immune response in Danais chrysippus following treatment with neem based insecticides. J. Entomol., 5, 200-206. DOI: 10.3923/ je.2008.200.206
  142. Pandey, J.P., Mishra, P.K., Kumar, D., Singh, B.M.K. & Prasad, B.C. (2010). Effect of temperature on hemocytic immune responses of tropical tasar silkworm, Antheraea mylitta Res. J. Immunol., 3, 169-177. DOI:10.3923/rji.2010.169. 177
  143. Pandey, S., Pandey, J.P. & Tiwari, R.K. (2012). Effect of botanicals on hemocytes and molting of Papilio demoleus J. Entomol., 9(1), 23-31. DOI:10.3923/ je.2012.23.31
  144. Pathak, S.C. & Kulshreshtha, V. (1993). Variation in haemocyte types with reference to reproduction activity in Blatella germanica (Dictyoptera: Blattidae) and the occurrence of undescribed haemocyte types in some adult stages. Entomon, 18, 119-125.
  145. Pendland, J.C. & Boucias, D.G. (1996). Phagocytosis of lectin-opsonized fungal cells and endocytosis of the ligand by insect Spodoptera exigua granular hemocytes: an ultrastructural and immunocytochemical study. Cell and Tissue Res., 285, 57-67. https:// doi. org/10.1007/s004410050620
  146. Qadri, S.S.H. & Narsaiah, J. (1978). Effect of azadirachtin on the moulting processes of last instar nymphs of Periplaneta americana (L.). Indian J. Exp. Biol., 16, 1141-1143.
  147. Qamar, A. & Jamal, K. (2009). Differential haemocyte counts of 5th instar nymphs and adults of Dysdercus cingulatus (Hemiptera: Pyrrhocoridae) treated with acephate, an organophosphorus insecticide. Biology and Medicine, 1(2),116-121.
  148. Raina, A.K. (1976). Ultrastructure of the larval hemocytes of the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae). Inter. J.Insect Morphol. Embryol., 5(3), 187-195. https://doi.org/10.1016/0020-7322(76)90003-9
  149. Rao, P.C.G., Ray, A. & Ramamurty, P.S. (1984). Effect of ligation and ecdysone on total haemocyte count in the tobacco caterpillar, Spodoptera litura (Noctuidae: Lepidoptera). Canadian Journal of Zoology, 62, 1461-1463. https://doi.org/10. 1139/z84-211
  150. Ratcliffe, N.A. & George, S.J. (1976). Cellular defense reactions of insect haemocytes in vivo: nodule formation and development in Galleria mellonella and Pieris brassicae J. Invert. Pathol., 28, 373- 382. https://doi.org/10.1016/0022-2011(76)90013-6
  151. Ratcliffe, N.A. & Rowley, A.F. (1987). Insect response to parasites and other pathogens. In: “Immunology, Immunoprophylaxis and Immunotherapy of Parasitic Infections”(Soulsby, E.J.L., ed.). pp: 271–332, Boca Raton, FL, USA, CRC Press.
  152. Redfern, R.E., Kelly, T.J. & Hayes, D.K. (1982). Ecdysteroid titers and moulting aberrations in last stage of Oncopeltus nymphs treated with insect growth regulators. Pestic. Biochem. Physiol., 18, 351-356. https://doi.org/10.1016/0048-3575(82)90076-1
  153. Reed, E. & Majumdar, S.K. (1998). Differential cytotoxic effects of azadirachtin on Spodoptera frugiperda and mouse cultured cells. Entomologia Experimentalis et Applicata, 89(3), 215-221. https:// doi. org/10.1046/j.1570-7458.1998.00402.x
  154. Reeson, A.F., Wilson, K., Gunn, A., Hails, R.S. & Goulson, D. (1998). Baculovirus resistance in the noctuid Spodoptera exempta is phenotypically plastic and responds to population density. Proceedings of the Royal Society of London B: Biological Sciences, 265, 1787-1791. https://www.jstor.org/stable/51260
  155. Relyea, R.A. (2009). A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities. Oecologia, 159, 363-376. DOI: 10.1007/s00442-008-1213-9
  156. Ribeiro, S., Guilhermino, L., Sousa, J.P. & Soares, A.M.V.M. (1999). Novel bioassay based on acetylcholinesterase and lactate dehydrogenase activities to evaluate the toxicity of chemicals to soil isopods. Ecotoxicol. Environ. Saf., 44, 287-293. https://doi.org/ 10. 1006/eesa.1999.1837
  157. Rizk, S.A. (1991). Effect of gamma radiation and some insecticides on the cotton leaf worm Spodoptera littoralis (Boisd.). M.Sc. Thesis, Faculty of Science, Cairo University, Egypt.
  158. Rizk, S.A., El–Halfawy, N.A. & Salem, H.M. (2001). Toxicity and effect of Margosan–O and azadirachtin on haemocytes of Spodoptera littoralis (Boisd.) larvae. Bull. Entomol., Soc. Egypt (Econ. Ser.), 28, 39-48.
  159. Sabri, M.A. & Tariq, B. (2004). Toxicity of some insecticides on the haemocytes of red pumpkin beetle, Aulacophora foveicollis J. Pakistan Entomol., 26, 109-114.
  160. Sabry, K.H. & Abdel-Aziz, N.F. (2013). Resistance and enzyme assessment of the pink bollworm, Pectinophora gossypiella (Saunders) to Spinosad. J. Animal & Plant Sci., 23(1), 136-142.
  161. Sadeghi, R., Raeisi, N.H. & Jamshidnia, A. (2017). Immunological responses of Sesamia cretica to Ferula ovina essential oil. Journal of Insect Science, 17(1), 1–5. DOI | 10.1093/jisesa/iew124
  162. Sadek, M.M. (2003). Antifeedant and toxic activity of Adhatoda vesica leaf extract against Spodoptera littoralis (Lep., Noctuidae). Applied Entomology, 127, 396-404. https://doi.org/10.1046/j.1439-0418.2003.00775.x
  163. Sahayaraj, K. & Kombiah, P. (2010). Insecticidal activities of neem gold on banana rhizome weevil (BRW), Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae). Journal of Biopesticides, 3(1 Special Issue), 304 -308.
  164. Saito, T. & Iwabuchi, K. (2003)0 Effect of bombyxin-II, an insulin-related peptide of insects, on Bombyx mori hemocyte division in single-cell culture. App. Entomol. Zool., 39, 583-588. https:// doi.org/ 10.1303/aez.2003.583
  165. Salama, M.A., Abd El-Baki, M.A., El-Naggar, J.B.A. & El-Naggar, E.Y. (2013). Efficiency of some insecticides sequence on cotton bollworms and histopathological effects of some biocides on pink bollworm larvae. Egypt. J. Agric. Res., 91(2), 429-448.
  166. Salehzadeh, A., Akhkha, A., Cushley. W., Adams, R.L., Kusel, J.R. & Strang, R.H. (2003). The antimitotic effect of the neem terpenoid azadirachtin on cultured insect cells. Insect Biochem Molec., 33, 681-689. https://doi.org/10.1016/S0965-1748(03)00057-2
  167. Saxena, B.P. & Tikku, K. (1990). Effect of plumbagin on hemocytes of Dysdercus koenigii Proc. Indian Acad. Sci. (Anim. Sci.), 99(2), 119-124.
  168. Schmid-Hempel, P. (2005). Evolutionary ecology of insect immune defenses. Annual Review of Entomology, 50, 529-551. https://doi.org/10.1146/annurev.ento.50. 071803.130420
  169. Schmidt, O., Theopold, U. & Strand, M.R. (2001). Innate immunity and evasion by hymenopteran endoparasitoids. BioEssays, 23, 344-351. DOI: 10.1002/bies.1049
  170. Schmit, A.R. & Ratcliffe, N.A. (1977). The encapsulation of foreign tissue implants in Galleria mellonella J. Insect Physiol., 23, 175-184. https://doi.org/10. 1016/0022-1910(77)90027-0
  171. Schmutterer, H. (1990a). Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu. Rev. Entomol., 35, 271- 297. https://doi.org/ 10.1146/annurev.en.35.010190.001415
  172. Schmutterer, H. (1990b). Insektizide aus dem Niembaum Azadirachta indica. Sanfte Chemie Fur den integrierten Pflanzenschutz in Entwicklungs- and industrielandern. Plits, 8(2), 57-71.
  173. Shaalan, E., Canyon, D., Younes, M., Abdel-Wahab, H. & Mansour, A. (2005). A review of botanical phytochemicals with mosquitocidal potential. Environment International, 31, 1149-1166. https://doi.org/10.1016/j.envint.2005.03.003
  174. Sharma, P.R., Sharma, O.P. & Saxena, B.P. (2001). Ultrastructureof the haemocytes of the tobacco armyworm, Spodoptera litura (Lerpidoptera: Noctuidae). Biol. Bratislava, 56(3), 277–285.
  175. Sharma, P.R., Sharma, O.P. & Saxena, B.P. (2003). Effect of neem glod on hemocytes of the tobacco armyworm, Spodoptera littura (Fabricius) (Lepidoptera: Noctuidae). Current Science, 84(5), 690-695. https://www.jstor. org/stable/24108506
  176. Sharma, P.R., Sharma, O.P. & Saxena, B.P. (2008). Effect of sweet flag rhizome oil (Acorus calamus) on hemogram and ultrastructure of hemocytes of the tobacco armyworm, Spodoptera litura (Lepidoptera: Noctuidae). Micron, 39, 544-551. https://doi.org/ 10.1016/ j.micron. 2007. 07.005
  177. Sharma, N.K., Ahirwar, D., Jhade, D. & Gupta, S. (2009). Medicinal and Phamacological Potential of Nigella sativa: A Review. Ethnobotanical Review, 13, 946-955.
  178. Shaurub, E.H. (2012). Immunonodulation in insects post-treatment with abiotic agents: a review. European Journal of Entomology, 109, 303-316. DOI: 10.14411/eje.2012.040
  179. Shaurub, E.H. & Sabbour, M.M. (2017). Impacts of pyriproxyfen, flufenoxuron and acetone extract of Melia azedarach fruits on the hemolymph picture of the black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae). Advances in Agricultural Science, 5(2), 1-9. https://aaasjournal.org/submission/index. php/ aaas/article/view/11
  180. Shaurub, E.H., Abd El-Meguid, A. & Abd El-Aziz, N.M. (2014). Quantitative and ultrastructural changes in the haemocytes of Spodoptera littoralis (Boisd.) treated individually or in combination with Spodoptera littoralis multicapsid nucleopolyhedrovirus (SpliMNPV) and azadirachtin. Micron, 65, 62–68. DOI: 10.1016/j. micron.2014.04.010
  181. Shu, B., Wang, W., Hu, Q., Huang, J., Hu, M. & Zhong, G. (2015). A comprehensive study on apoptosis induction by azadirachtin in Spodoptera frugiperda cultured cell line Sf9. Arch. Insect Biochem., 89, 153-168. DOI: 10.1002/arch.21233
  182. Shull, W.E., Riley, M.K. & Richardson, C.H. (1932). Some effects of certain toxic gases on the blood of the cockroach, Periplaneta orientalis (L.). Journal of Economic Entomology, 25, 1070-1072. https://doi.org/10.1093/jee/25.5.1070
  183. Siddiqui, M.I. & Al-Khalifa, M.S. (2014). Review of haemocyte count, response to chemicals, phagocytosis, encapsulation and metamorphosis in insects. Italian Journal of Zoology, 81(1), 2-15. doi: 10.1080/11250003.2013.858780
  184. Silva, J.E.B., Boleli, I.C. & Simoes, Z.L.P. (2002). Hemocyte types and total and differential counts in unparasitized and parasitized Anastrepha obliqua (Diptera, Tephritidae) larvae. Brazilian Journal of Biology, 62(4a), 689-699. http://dx.doi.org/10.1590/S1519-69842002000400017
  185. Sinclair, B.J., Ferguson, L.V., Salehipour-Shirazi, G. & Macmillan, H.A. (2013). Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. Integrative and Comparative Biology, 53, 545–556. DOI: 10.1093/icb/ict004
  186. Singh, G.P., Zeya, S.B., Srivastava, A.K., Prakash, B., Ojha, N.G. & Suryanarayana, N. (2008). Susceptibility of three Eco-races of tropical tasar silkworm to Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV). Caspian J. Environ. Sci., 6, 161-165.
  187. Soares, T., Cavalcanti, M.G.S., Ferreira, F.R.B., Cavalcanti M.S., Alves L.C., Brayner, F.A. & Paiva, P.M.G. (2013). Ultrastructural characterization of the hemocytes of Lasiodora (Koch, 1850) (Araneae: Theraphosidae). Micron, 48, 11-16. doi:10.1016/j.micron. 2013.02.002
  188. Strand, M.R. (2008). The insect cellular immune response. Insect Sci., 15, 1-14. https://doi.org/10.1111/j.1744-7917.2008.00183.x
  189. Strand, M.R. & Pech, L.L. (1995). Immunological basis for compatibility in parasitoid-host relationships. Annu. Rev. Entomol., 40, 31-56. https://doi.org/10. 1146/ annurev.en.40.010195.000335
  190. Suhail, A., Gogi, M.D., Arif, M.J., Rana, M.A. & Sarfraz, M. (2007). Effect of various treatment of azadirachtin, spinosad and abamectin on the haemogram of Coccinella septempunctata (Coleoptera: Coccinellidae). Pakistan Entomologist, 29(2), 151-164.
  191. Tavares, W.S., Cruz, I., Petacci, F., Assis Junior, S.L., Freitas, S., Zanuncio, J.C. & Serrao, J.E. (2009). Potential use of Asteraceae extracts to control Spodoptera frugiperda (Lepidoptera: Noctuidae) and selectivity to their parasitoids Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) and Telenomus remus (Hymenoptera: Scelionidae). Ind.Crop. Prod., 30: 384-388. https://doi. org/10.1016/j.indcrop.2009.07.007
  192. Theopold, U., Schmidt, O., Soderhall, K. & Dushay, M.S. (2004). Coagulation in arthropods: defense, wound closure and healing. Trends Immunol., 25, 289-294. https://doi.org/10.1016/j.it.2004.03.004
  193. Tiwari, R.K., Pandey, J.P. & Salehi, R. (2002). Haemopoietic organs and effect of their ablation on total haemocyte count in lemon butterfly, Papilio demoleus Indian Exp. Biol., 40(10), 1202-1205.
  194. Tiwari, R.K., Pandey, J.P. & Kumar, D. (2006). Effects of neem based insecticides on metamorphosis, haemocytes count and reproductive behavior in red cotton bug, Dysdercus koenigii fabr (Heteroptera: Pyrrhocoridae). Journal of Entomology and Zoology Studies, 31, 267-275.
  195. Tojo, S., Naganuma, F., Arakawa, K. & Yokoo, S. (2000). Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. J. Insect Physiol., 46, 1129-1135. https://doi.org/10.1016/ S0022-1910(99)00223-1
  196. Tsakas, S. & Marmaras, V.J. (2010). Insect immunity and its signalling: an overview. Invertebrate Survival Journal, 7, 228-238.
  197. Tu, Z.L., Kobayashi, Y., Kiguchi, K., Watanabe, H. & Yamamoto, K. (2002). Effects of heavy-ion radiosurgery on the hemopoietic function of the silkworm Bombyx mori. J. Radiat. Res., 43, 269-275. http://dx.doi.org/10.1269/jrr.43.269
  198. Urbanski, A., Czarniewska, E., Baraniak E. & Rosinski, G. (2017). Impact of cold on the immune system of burying beetle, Nicrophorus vespilloides (Coleoptera: Silphidae). Insect Science, 24, 443–454. DOI: 10.1111/1744-7917.12321
  199. Vass, E. & Nappi, A.J. (2001). Fruit fly immunity. BioEssays, 51, 529-535.
  200. Vendan E.S. (2016). Current scenario of biopesticides and ecofriendly insect pest management in India. South Indian Journal of Biological Sciences, 2(2), 268-271. DOI: 10.22205/sijbs/2016/v2/i2/100315
  201. Vey, A., Matha, V. & Dumas, C. (2002). Effects of the peptide mycotoxin destruxin E on insect haemocytes and on dynamics and efficiency of the multicellular immune reaction. Journal of Invertebrate Pathology, 80, 177-187. https://doi.org/ 10.1016/S0022-2011(02)00104-0
  202. Viglianco, A.I., Novo, R., Cragnolini, C. & Nassetta, M. (2006). Actividad biológica de extractos crudos de Larrea divaricata y Capparis atamisquea Kuntze sobre Sitophilus oryzae (L.).  Agriscientia, 23, 83-89.
  203. Vlisidou, I. & Wood, W. (2015). Drosophila blood cells and their role in immune responses. FEBS J., 282, 1368-1382. DOI:10.1111/febs.13235
  204. Vogelweith, F., Thiery, D., Quagliett, B., Moret, Y. & Moreau, J. (2011). Host plant variation plastically impacts different traits of the immune system of a phytophagous insect. Functional Ecology, 25, 1241-1247. DOI:10.2307/ 41319620
  205. Vogelweith, F., Moret, Y., Monceau, K., Thiéry, D. & Moreau, J. (2016). The relative abundance of hemocyte types in a polyphagous moth larva depends on diet. J. Insect Physiol., 88, 33-39. http://dx.doi.org/10.1016/j.jinsphys.2016.02.010
  206. Wago, H. (1980). Humoral factors promoting the adhesive properties of the granular cells and plasmatocytes of the silkworm, Bombyx mori, and their possible role in the initial cellular reactions to foreignness. Cellular Immunology, 54, 155-169. https://doi.org/10.1016/0008-8749(80)90198-7
  207. Wang, Y. & Jiang, H. (2004). Prophenoloxidase (proPO) activation in Manduca sexta: an analysis of molecular interactions among proPO, proPO-activating proteinase-3, and a cofactor. Insect Biochemistry and Molecular Biology, 34, 731-742. https://doi.org/10.1016/ibmb. 2004.03.008
  208. Wang, Q., Liu, Y., He, H.J., Zhao, X.F. & Wang, J.X. (2010). Immune responses of Helicoverpa armigera to different kinds of pathogens. BMC Immunol., 11(9), 12pp. https://doi.org/10.1186/1471-2172-11-9
  209. Wheeler, R.E. (1963). Studies on the total hemocyte count and hemolymph volume in Periplaneta americana (L) with special reference to the last moulting cycle. J. Insect Physiol., 9, 223-235. https://doi.org/10.1016/0022-1910(63)90074-X
  210. Wigglesworth, V.B. (1979). Hemocytes and growth in insects. In: “Insect hemocytes”(Gupta, A.P., ed.). pp: 303-318. New York: Cambridge University Press.
  211. Williams MJ. (2007). Drosophila hemopoiesis and cellular immunity. J. Immunol., 178, 4711–4716. DOI: https://doi.org/10.4049/178.8. 4711
  212. Wojda, I., Kowalski, P. & Jakubowicz, T. (2009). Humoral immune response of Galleria mellonella larvae after infection by Beauveria bassiana under optimal and heat-shock conditions. Journal of Insect Physiology, 55, 525-531. https://doi.org/10.1016/j.jinsphys.2009.01.014
  213. Wood, W. & Jacinto, A. (2007). Drosophila melanogaster embryonic haemocytes: masters of multitasking. Nature Rev.: Mol. Cell Biol., 8, 542-551.
  214. Wu, G., Liu, Y., Ding, Y. & Yi, Y. (2016). Ultrastructural and functional characterization of circulating hemocytes from Galleria mellonella larva: cell types and their role in the innate immunity. Tissue and Cell, 48(4), 297-304. https://doi.org/10.1016/tice.2016. 06.007
  215. Wyllie, A.H. (1981). Cell death: a new classification separating apoptosis from necrosis. In: “Cell Death in Biology and Pathology”(Bowen I.D. and Lockshin R.A., eds.). Chapman and Hall, London and New York 1st, pp: 9-34.
  216. Xue, C.B., Luo, W.C., Chen, Q.X., Wang, Q. & Ke, L.N. (2006). Enzymatic properties of phenoloxidase from Pieris rapae (Lepidoptera) larvae. Insect Science, 13, 251–256. https://doi.org/ 1111/j.1744-7917.2006.00091.x
  217. Yeh, S.P., Sung, G.T., Chang, C.C., Cheng, W. & Kuo, M.N. (2005). Effects of an organophosphorus insecticide, trichlorfon, on hematological parameters of the giant freshwater prawn, Macrobrachium rosenbergii (de Man). Aquaculture, 243, 383-392. doi:10.1016/j.aquaculture.2004.10.017
  218. Zahran, H.M. & Gad, A.A. (2013). Effect of certain plant extracts on mortality, development and haemogram of Culex pipiens mosquitoes larvae. Alexandria Science Exchange J., 34(2), 234-241.
  219. Zhu, Q., He, Y., Yao, J., Liu, Y., Tao, L. & Huang, Q. (2012). Effects of sublethal concentrations of the chitin synthesis inhibitor, hexaflumuron, on the development and hemolymph physiology of the cutworm, Spodoptera litura. J. Insect Sci., 12(27), 1-13. doi: 10.1673/031.012.2701.
  220. Zhu, J.Y., Wu, G.X., Ye, G.Y. & Hu, C. (2013). Heat shock protein genes (hsp20, hsp75 and hsp90) from Pieris rapae: molecular cloning and transcription in response to parasitization by Pteromalus puparum. Insect Science, 20, 183–193. https://doi.org/10.1111/j.1744-7917.2011.01494.x
  221. Zibaee, A. & Bandani, A.R. (2010a). Effects of Artemisia annua (Asteracea) on the digestive enzymatic profiles and the cellular immune reactions of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae), against Beauveria bassiana. Bull. Entomol. Res., 100(2), 185-96. DOI: 10.1017/S0007485309990149
  222. Zibaee, A. & Bandani, A. R. (2010b). A study on the toxicity of the medicinal plant, Artemisia annua (Astracea) extracts the Sunn pest, Eurygaster integriceps Puton (Heteroptera: Scutelleridae). Journal of Plant Protection Research, 50, 48-54. DOI: 10.2478/v10045-010-0014-4
  223. Zibaee, I., Bandani, A.R., Sendi, J.J., Talaei-Hassanlouei, R. & Kouchaki, B. (2010). Effects of Bacillus thurengiensis kurstaki, and medicinal plants (Artemisia annua L.) and (Lavandula stoechas L.) extracts on digestive enzymes and Lactate dehydrogenase of Hyphantria cunea Drury (Lepidoptera: Arctiidae). Invertebrate Survival Journal, 7, 251-261.
  224. Zibaee, A., Zibaee, I. & Sendi, J.J. (2011). A juvenile hormone analog, pyriproxyfen, affects some biochemical components in the hemolymph and fat bodies of Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Pesticide Biochemistry and Physiology, 100(3), 289-298. DOI: 10.1016/j.pestbp.2011.05.002
  225. Zibaee, A., Bandani, A.R. & Malagoli, D. (2012). Methoxyfenozide and pyriproxyfen alter the cellular immune reactions of Eurygaster integriceps Puton (Hemiptera: Scutelleridae) against Beauveria bassiana. Pesticide Biochemistry and Physiology, 102, 30-37. DOI: 10.1016/j.pestbp.2011.10.006

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.